Appendix B

Part 1 - Original Business Case Appendices

Appendix A

Appendix B

Mr A Law,
Warwickshire County Council
By Email

Highways Agency
The Cube
199 Wharfside Street
Birmingham B1 1RN
Direct Line: 01216878215
27 March 2014

Dear Mr Law,

A46/A425 Stanks Grade Separated Roundabout and Corridor Improvements A46/A452 Thickthorn Grade Separated Roundabout and Corridor Improvements

Further to recent discussions I would like to confirm the Highways Agency's support for the above schemes.

These improvements are required in order to address congestion issues on the Warwickshire County Council highway network which result in significant and regular queue propagation onto the Highways Agency network (A46) causing serious safety concerns.

Yours sincerely,

Neil Hansen Asset Manager
NDD Midlands Asset Development
Email address: neil.hansen@highways.gsi.gov.uk

Chris Elliott Chief Executive

Mr Roger Newham
Warwickshire County Council
Highways Division
Shire Hall
Warwick
CV34 4RL

Warwick District Council, Riverside House Milverton Hill, Royal Leamington Spa, CV32 5HZ
direct line: 01926456000
switchboard: 01926410410
fax: 01926456026
email: chris.elliott@warwickdc.gov.uk
web: www.warwickdc.gov.uk
our ref:CE/GSH your ref:
$27^{\text {th }}$ March 2014

Dear Roger

Proposals for the A46/A425 Stanks Grade Separated Roundabout and Corridor Improvements and the A46/A452 Thickthorn Grade Separated Roundabout and Corridor Improvements in the Coventry and Warwickshire SEP

I would like to confirm this Council's support for the two highway schemes identified above as part of the Coventry and Warwickshire SEP proposals to deliver growth in our local economy.

As you know this Council's Local Plan, which is about to be considered as a draft for submission, contains some ambitious proposals and in global terms, over a 15 year period, will enable almost 13,000 homes to be built (a growth of over 20\%); over 180 hectares of employment land; over 16,000 permanent jobs and almost 10,000 construction jobs, all amounting to a private sector capital investment of circa $£ 4$ billion. All of this will contribute significantly to the SEP ambitions, of which this Council is a key signatory.

As part of this overall package we envisage in the region of $£ 200$ million investment in supporting infrastructure which we hope to realise this through a mixture of S106, CIL and other investments. It is from this source that we anticipate the match funding being derived.

The key to turning our plans into reality is to overcome various barriers to development. In our area there are a range of constraints in relation to the local infrastructure, especially transport and in particular the A46 Corridor, which runs through our District and alongside which are a number of key sites that we anticipate coming forward to realise the envisaged growth. These two proposals for improvements to key junctions on the A46 are vitally important to our growth plans and to those of the SEP and we commend them.

Yours sincerely,

Chris Elliott
Chief Executive

Appendix C

FAITHFUL
 GロபLD

Warwickshire County Council

A425 - Birmingham Road, Stanks Island Improvements

Feasibility Estimate

Issue and Revision Record:

Rev.	Date	Originator	Checked	Approved	Description
0	$06 / 03 / 2014$	SS			DRAFT
1	$13 / 03 / 2014$	SS			

A425-Birmingham Road						
Stanks Island Capacity Improvements						
Summary						
Section	Total Construction Cost	Indirects			$\begin{aligned} & \text { Contingency } \\ & (40 \%) \end{aligned}$	Total Project Cost
		$\begin{gathered} \hline \text { Preliminaries } \\ (20 \%) \\ \hline \end{gathered}$	Design (10\%)	$\begin{gathered} \hline \text { Client Costs } \\ (10 \%) \\ \hline \end{gathered}$		
1. Temporary/Enabling Works	413,103.98	82,620.80	41,310.40	41,310.40	231,338.23	809,683.80
2. Site Clearance	37,759.87	7,551.97	3,775.99	3,775.99	21,145.53	74,009.35
3. Fencing and Environmental Barriers	6,361.30	1,272.26	636.13	636.13	3,562.33	12,468.15
4. Safety Fences, Barriers and Guardrails	0.00	0.00	0.00	0.00	0.00	0.00
5. Drainage	113,870.29	22,774.06	11,387.03	11,387.03	63,767.36	223,185.77
6. Earthworks	262,578.99	52,515.80	26,257.90	26,257.90	147,044.23	514,654.82
7. Pavements	399,951.28	79,990.26	39,995.13	39,995.13	223,972.72	783,904.51
8. Kerbs and Footways	63,575.36	12,715.07	6,357.54	6,357.54	35,602.20	124,607.70
9. Traffic Signs (Including Signals) and Road Markings	175,409.81	35,081.96	17,540.98	17,540.98	98,229.49	343,803.22
10. Lighting, Electrical Work and Communications	242,909.03	48,581.81	24,290.90	24,290.90	136,029.06	476,101.69
11. Retaining walls/Structures	0.00	0.00	0.00	0.00	0.00	0.00
12. Landscaping	0.00	0.00	0.00	0.00	0.00	0.00
TOTALS	1,715,519.90	343,103.98	171,551.99	171,551.99	960,691.15	3,362,419.01

A425-Birmingham Road
Stanks Island Capacity Improvements

Notes, Assumptions and Exclusions

Description

Feasibility estimate capturing the new road and junction improvements around the Stanks Island and surrounding areas

Drawings \& Documents

The following documents have been used in the preparation of this estimate:

D1 9.2-A452-055-001 Rev -
D2 9.2-A452-055-002 Rev -

Assumptions

General

G1 The estimate base date is 1 Q 14
G2 No allowance has been added for inflation at this moment in time as it is difficult to assess when the mid point of construction will be at this stage
G3 An uplift factor of 40% has been applied for estimating uncertainty due to the level of design received
G4 Service diversions/protection - Although difficult to assess at this stage, an allowance of 25\% of the construction cost has been included for costs associated with services.
G5 Allowance for traffic management for 16 weeks (construction duration assumed)
G6 No major earthworks required
G7 The existing road is cold milled (binder and surface course removed) with the existing sub base and base being suitable for re use
G8 Highway construction - made up of:

- 250mm granular sub base
- 150mm bitumen base
- 60 mm bitumen binder
- 40 mm bitumen surface

G9 Footway construction - made up of:

- 150mm granular sub base
- 55 mm bitumen base
- 25mm bitumen surface

G10 Please see estimate sheet for further notes and assumptions
G11 Footbridge will be a typical steel construction with stairs either side

Exclusions

EX1 Excludes 3rd party compensation costs
EX2 Excludes planning and approval charges
EX3 Costs associated with Statutory Fees (e.g. HMRI, Local Authority, etc.) unless confirmed
EX4 Costs associated with taxes and levies, including VAT
EX5 Costs associated with licences and all associated costs and fees
EX6 Costs associated with changes in legislation and any form of applicable standards
EX7 Costs associated with changes in legislation, regulation and interpretation covering
EX8 Land costs

Appendix D

REVISED

Riskil ${ }^{\text {No }}$	Daticidentified		${ }^{\text {on }}$ Rsk osscriplon	${ }^{\text {Risk Consequence }}$																						Soment	Sns	
							Justrifation									Justrication							¢62225．00	Retamer	Curenememata masames	Actaso omar	Trasactanpeoso	Nose
Ooube elatex soser	Oombecelictis sor	Doute elicke soor	Ooubecticko soor					ort	＂	Pese	ort	m	ness				ort	m	Pess	ort	m	Pess						
1	11314	Negotiation for land with British Waterway Warwick District	There is a risk that the process of acquiring the than anticipated	cease ine and ost				5．00	15，00	50，00	20	${ }^{60}$	120	5\％	mane？	$\begin{aligned} & \text { There will be some residual } \\ & \text { risk. Still have to pay some } \\ & \text { legal costs } \end{aligned}$	0	5．00	15，00	。	20	60	${ }^{333}$	Aant Lav $\frac{1}{2}$		Aan Law	330442014	
2	11314			Apply for Natural England licence for relocation（newt relocation quite a difficult and long process），time and cost impact．Tree preservation orders				5．00	10，00	15，00	－	${ }^{\text {80 }}$	${ }^{180}$	5\％	\＃Nane？	Small residual risk left． Once mitigation actions completed the site will be cleared，surveys completed and creatures moved	0	1．000	5．000	。	5	5	100			Aan Law	${ }^{310772014}$	
${ }^{3}$	11334		There is a risk that th Highways Agency may not approve scheme －	Time delay．HA may provide other options which would increase WCC cost．Could ultimately scheme schem				5．000	10，00	15，00	20	40	${ }^{6}$	\％\％	\＃name？	Risk vilu be miliged	－	－	－	。	－	－	－	Aan Lax ${ }_{\text {pax }}$		Aan lam	${ }^{310332015}$	
4	11314		here is a risk that ther may be unexpected																							Aan lam	${ }^{310552014}$	
5	11334		There is a risk that may object to changes roposed in scheme	Increased timescales， time for appeal if planning permission required	30\％\＃N		Probability：based on previous experience Cost：Appeal costs Time：Optimistic－ Residents would lodge objection，WCC would write response and this would be accepted．ML as for Opt but committee needs to visit site and go through additional cycle． Pessimistic－appeal	0	\bigcirc	10，000	0	${ }^{20}$	${ }^{60}$	25\％	\＃NAME？	Probability：based on previous experience Cost：Appeal costs Time：Optimistic－ Residents would lodge objection，WCC would write response and this would be accepted．ML as for Opt but committee needs to visit site and go through additional cycle．Pessimistic－appeal	0	0	10，00	－	20	60	${ }^{83}$	Alan lav 1	1．Appoporiate onsulutaion	Aan lam	${ }^{31052014}$	
${ }^{6}$	$11 / 354$	Extra lane of traffic being added to the bridge and was on lane	There is a risk that the enough to support the second lane of traffic	Scheme will need to change significantly or bridge will need to be strengthened				50，00	125，00	300000	${ }^{10}$	${ }^{40}$	${ }^{6}$	5\％	\＃NAME？		50，00	125，00	300，00	10	40	60	7.917	Hant Lav $\frac{1}{2}$		Alan lam	${ }^{310552014}$	
7	11334	Queuing traffic on dual carriageway（existing safety risk）．	$\begin{aligned} & \text { There is a risk of a traffic } \\ & \text { accident occurring before } \\ & \text { commencement of } \\ & \text { scheme } \end{aligned}$	$e_{\text {repurational damage }}$	5\％\＃N			－	－	－	。	－	－	5\％	Hname？	Probability： 2 incidents at this location over the last 12 months No time or cost as reputational impact	－	－	－	－	－	。	－	Aantaw 1		Aan lam	$3^{300920214}$	
8	113344		There is a risk that the desired outcome in terms of improvement to the network may not realised．	Reputational impact． Could impact on downstream schemes or create an additional scheme increasing				0	－	－	－	－	0	5\％	HName？		－	－	－	－	－	－	－	Alan lav 1	1．Toleate the isk			

				Risk Consequence Double-click to Sort		Justrifation	Cortmpat			ssamesuelmeat					Justifatation				stanatuempat			E62225.00	Remomer	Curen Conatol leasues	Ataten Omear		Noss	
							ort	m	Pess	ort	"	Pese			orr	m	Pess	ort	m"	pess								
${ }^{17}$	113514		There is a risk o unacceptable level of noise during constructio nose during construction				150,00	150,000	150,00	25	${ }^{25}$	25	2086	\#NAME?			150.00	150,00	150,000	25	25	25	30,00	Alan taw ${ }_{\substack{1 \\ n_{2} \\ 4 \\ 4 \\ 4}}$		Alan Law	288022015	
${ }^{18}$	113514	cy of existing e. More drainage. More iageway being built	There is a risk that the current drainage system from the road	$\begin{aligned} & \text { Water will back up } \\ & \text { onto the carriageway } \\ & \text { and stay there as } \\ & \text { surface water } \end{aligned}$	15\% \#NAME?	Probability: Previous experience Cost: ML and Pess between $£ 5$ and $£ 10 \mathrm{k}$ based on attenuation systems Time: No time impact	-	5.000	10.000	0	0	0	5\%\% +n0	mNane?		0	5.000	10.000	0	0	0	250	Alan Lav ${ }_{\text {ater }}$					
19	$11 / 384$		There is a risk of significant disruption during construction		25\% \#NAME?	Probability: Previous experience Cost: Officer time Time: No time impact Reputational impact	-	2.000	5.000	-	0	0	10% mon	\#Nane?	Probability: Previous experience Cost: Officer time Time: No time impact Reputational impact	\bigcirc	2.000	5.00	-	0	。	${ }^{233}$	Alan Law 1	1. Cood communicaion pana and engagener with pubic	Aan law	${ }^{310552014}$		

REVISED

Quantitative Cost Risk Analysis
Warwickshire County Council
A425 Birmingham Road Stanks Island Improvement
$14^{\text {th }}$ March 2014

Document status						
Revision	Date	Status or comment	Prepared by	Checked by	Authorised by	
01	12.03 .14	First issue	Claire Mills	Mark Warner	Mark Warner	

REVISED

DISCLAIMER

This document and its contents have been prepared and are intended solely for the Client's information and use in relation to [PURPOSE].

Faithful+Gould assumes no responsibility to any other party in respect of or arising out of or in connection with this document and/or its contents.

COPYRIGHT

The copyright of this document is vested in Faithful+Gould. This document may not be reproduced in whole or in part without their express written permission.

CONTENTS

1.0 EXECUTIVE SUMMARY 2
2.0 BACKGROUND 3
3.0 METHODOLOGY 4
4.0 RESULTS 5

1.0 EXECUTIVE SUMMARY

The Quantitative Cost Risk Analysis (QCRA) was undertaken to inform the level of risk contingency that is required to support the Outline Major Transport Scheme Business Case for A425 Birmingham Road Stanks Island Improvements being proposed by Warwickshire County Council (WCC).

The key assumptions and exclusions that the QCRA is based upon can be found in the Feasibility Estimate, produced by Faithful+Gould (F+G).

Note: The results from the QCRA do not include the cost of Schedule Delay. It is suggested that an additional contingency be included for this.

The QCRA summary can be seen in the table below:

Table 1: Pre and Post Mitigated Confidence Values
The following three risks are those which have the biggest influence on risk exposure pre mitigation. These are the ones where it is suggested that management action should be focussed:

- Risk ID 17: There is a risk of unacceptable level of noise during construction;
- Risk ID 6: There is a risk that the bridge may not be strong enough to support the second lane of traffic;
- Risk ID 11: There is a risk that uncharted utilities may be discovered when work starts.

2.0 BACKGROUND

As part of the Coventry and Warwickshire Local Enterprise Partnership Strategic Economic Plan, Warwickshire County Council is submitting a number of Outline Major Transport Scheme Business Cases. F+G have been asked to support these by working with WCC to produce a risk register and QCRA for each of the 5 Outline Business Cases. These are:

- A425 Birmingham Road Stanks Island Improvement;
- A426 Avon Mill Roundabout;
- A444 Corridor Improvement, Coton Arches Roundabout to George Eliot Hospital;
- A452 Kenilworth Road;
- A3400 Bridgefoot/Bridgeway/Tiddington Road/Shipston Road

Further detail for each of these schemes can be found in the individual Outline Business Cases produced by Warwickshire County Council.
REVISED

3.0 METHODOLOGY

A risk identification workshop was held at Warwickshire County Council on Tuesday $11^{\text {th }}$ March 2014 with the objective of identifying and assessing risks relevant to the A425 Birmingham Road Stanks Island Improvements scheme. Alan Law, Nick Dauncey and Nick Holland represented WCC, Steve Boden represented Atkins and Claire Mills from F+G facilitated the workshop. All participated in the deliberations.

The objectives of the meeting were to:

- identify significant risks to the achievement of the project objectives
- establish a project risk register, including quantified cost and time impacts pre and post mitigation
- identify actions to be undertaken to increase the probability of project success

The risks to the project were identified in a brainstorming session. Each risk was then analysed to understand the probability of occurrence and severity of the impact of the risks on the project outcome. A risk owner was allocated and a mitigation strategy decided upon.

4.0 RESULTS

The mean risk exposure for the project pre mitigation is $£ 137,119$ and post mitigation is $£ 62,279$. This is represented as follows:

Pre Mitigation			
Confidence Levels			
Mean	10%	50%	80%
$£ 137,119$	$£ 19,139$	$£ 161,065$	$£ 211,594$

Post Mitigation			
Confidence Levels			
Mean	10%	50%	80%
$£ 62,279$	$£ 0$	$£ 28,730$	$£ 150,000$

4.1

The graph below shows the range of simulated total risk exposure pre mitigation:

Figure 1: Distribution Graph Pre Mitigation

The evaluation also identified the top 5 risks that drive the risk exposure pre mitigation:

The graph below shows the range of simulated total risk exposure post mitigation:

Figure 3: Distribution Graph Post Mitigation

The evaluation also identified the top 5 risks that drive the risk exposure post mitigation:

Figure 4: Tornado Chart Post Mitigation

Claire Mills

The Hub

Bristol
BS32 4RZ
Telephone: +44 (0)1454 663000
Fax: +44 (0)1454 663344

REVISED

Appendix E

Table KS605EW

2011 Census: Industry, local authorities in England and Wales

ngland and Wales

onstituent Countries; Regions, counties, London boroughs, unitary
authorities and districts in England; unitary authorities in Wales

All usual residents aged 16 to $\mathbf{7 4}$ in employment the week before the census

Table 3.4

These tables are part of the Regional Gross Value Added release published on the 11th December 2013

A452/A46 Thickthorn Grade Separated Roundabou

A444 Corridor Improvements - Coton Arches Roundabout to George Eliot Hospit:

A425/A46 Stanks Grade Separated Roundabout and Corridor Improvement

A426/A4071 Avon Mill Roundabout and Hunters Lane Improvements (LOW ESTIMATI)

GVA Non-Construction (from development sites)

Scheme	2025 GVA	Cumulative GVA to 2025
A452/A46 Thickthorn Grade Separated Roundabout	$£ 10,733,000$	$£ 45,696,000$
A444 Corridor Improvements - Coton Arches Roundabout to George Eliot Hospital	$£ 147,663,000$	$£ 563,283,000$
A425/A46 Stanks Grade Separated Roundabout and Corridor Improvements	$£ 6,044,000$	$£ 30,952,000$
A426/A4071 Avon Mill Roundabout and Hunters Lane Improvements (LOW ESTIMATE)	$£ 90,940,000$	$£ 387,178,000$
A426/A4071 Avon Mill Roundabout and Hunters Lane Improvements (HIGH ESTIMATE)	$£ 157,029,000$	$£ 668,554,000$

Construction GVA

Scheme	GVA	Year
A452/A46 Thickthorn Grade Separated Roundabout	$£ 2,827,000$	2017
A444 Corridor Improvements - Coton Arches Roundabout to George Eliot Hospital	$£ 2,254,000$	2018
A425/A46 Stanks Grade Separated Roundabout and Corridor Improvements	$£ 821,000$	2015
A426/A4071 Avon Mill Roundabout and Hunters Lane Improvements	$£ 1,545,000$	2017

Appendix F

Warwickshire County Council
 Warwick Town PARAMICS
 Modelling
 Local Model Validation \& Forecast Report

232815-02 /R001

Issue | 31 March 2014

This report takes into account the particular instructions and requirements of our client.

It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 232815-02

Contents

Page
1 Introduction 1
1.1 Background 1
1.2 Modelling Software 1
1.3 Scope 2
2 Existing Conditions \& Data 4
2.1 Traffic Data 4
2.2 Journey Time Surveys 5
2.3 Queuing Analysis 6
2.4 Demand Data 6
3 Base Model Development 8
3.1 Time Periods 8
3.2 Network Extent 8
3.3 Link Categories 9
3.4 Cost Factors 10
3.5 Road Hierarchy 11
3.6 Zone Development 14
3.7 Traffic Signals 14
4 Matrix Development 16
4.1 Overview 16
4.2 Generalised Cost Equation (GCE) 16
4.3 Prior Matrix Development 17
4.4 HGV Prior Matrices 19
4.5 Constraints 20
4.6 Matrix Segregation 21
4.7 Base Matrix Estimation 21
4.8 Demand Totals 22
$4.9 \quad$ Sector to Sector Comparisons 22
$4.10 \quad$ Vehicle Fleet Mix 23
$4.11 \quad$ Vehicle types 24
5 Network Calibration 26
5.1 General 26
5.2 Key Microsimulation Parameters 26
5.3 Routing and Feedback Parameters 26
5.4 Network Calibration 28
5.5 Network Calibration 29
5.6 Vehicle Release Profiles 32
6 Flow Calibration 34
6.1 Count Data 34
6.2 The GEH Statistic 34
6.3 DMRB Criteria 34
6.4 GEH Calibration 35
6.5 Link Calibration 36
6.6 Flow Calibration 37
6.7 Queue Calibration 38
6.8 Calibration Summary 40
7 Model Validation 41
7.1 Overview 41
7.2 Link Count Validation 41
7.3 Journey Time Validation 42
7.4 Validation Summary 45
8 Model Forecasting 47
8.1 Introduction 47
8.2 Objectives 47
8.3 Scope 47
8.4 Background Forecasts 47
8.5 Matrix Levels 48
8.6 TEMPRO/NTEM Factors 48
8.7 2013 Demand Levels 48
$8.8 \quad 2016$ Demand Levels 49
$8.9 \quad 2021$ Demands Levels 49
9 Summary and Conclusions 50
9.1 Summary 50
9.2 Conclusion 51

Appendices
Appendix A
Link Flow Calibration Tables
Appendix B
Link Flow Validation Table
Appendix C
Journey Time Validation Tables
Appendix D
NTEM Factors
\section*{Appendix E}
Warwick Bluetooth Survey - Data Analysis

1 Introduction

1.1 Background

Arup were commissioned by Warwickshire County Council to build a PARAMICS model of Warwick town centre.

There are a number of reasons behind the development of this area specific model including:

- To enable detailed testing of scheme proposals within the area of the A46/A4177 junction to be undertaken.
- To enable options for proposals pertaining to the simplification of traffic movements across the town centre to be undertaken through a separate, subsequent, study.
- To enable detailed testing of the implications of the Local Plan allocations to be undertaken within a more refined and detailed study model.
It is also intended that the model will also be made available for development control testing should it be required.

1.2 Modelling Software

In this instance, as the original model was developed using PARAMICS it was natural for any extension or update to be undertaken using the same software particularly when considering the proficiency of WCC in PARAMICS.

PARAMICS Micro-simulation as an Assessment Tool

PARAMICS is a micro-simulation traffic model that simulates the behaviour of each individual vehicle and presents its output as a real time visual display for traffic management and road network design.

PARAMICS allows a detailed representation of the highway network in the form of modelling of individual lanes, traffic signals, junctions, pedestrian crossings and bus stops as well as the events which occur on it. Each individual vehicle is separately represented and therefore the programme can take an account of each individual driver's behaviour.

The output is a visual display which shows the changing position of individual vehicles and queues on the highway network in real time. The advantage of a visual display enables the non-technical experts to view the results of highway and development proposals in terms of traffic flows and congestion.

Driver and Vehicle Behaviour

The movement of individual vehicles within PARAMICS is governed by three interacting models representing vehicle-following, junction behaviour (gap acceptance) and lane-changing behaviour. All these three models are well documented in transport research and accepted world-wide.

Vehicle dynamics are relatively simple, combining a mixture of driver behaviour and some limitations based on vehicles' physical type and kinematics (e.g. size and acceleration/deceleration).

Individual driver behaviour is determined through the random allocation of aggression and awareness characteristics to the driver of each vehicle. Junction behaviour (gap acceptance), top speed, headway and propensity to change lanes are all examples of quantities that vary according to the behaviour parameters.

Road Network

PARAMICS is sensitive to the definition of the road network. The success of a model in reproducing the existing conditions and forecasting changes in travel behaviour is largely dependent on the accuracy in modelling the road layout and geometry. The speed of each vehicle is determined by the interaction between vehicles within the constraints imposed by the road layout.

1.3 Scope

The coverage of the study area is outlined within Figure 1.
Figure 1- Study Area

The extent of the model network has been derived from a cordon of the existing Warwick and Leamington Wide Area PARAMICS model (WLWA). The purpose of defining a smaller study area, when producing a microsimulation model, is that allows the model to be refined and calibrated to a greater level of detail.

As the study area grows it becomes increasingly difficult to ensure accuracy with regards vehicle behaviour, routing, queuing and delay. Thus a smaller model can, at times, be more desirable.

Furthermore, recent Origin-Destination data, in the form of Bluetooth surveys, has become available. This data source is covered in more detail within the following section of this Report; however, the availability of this data has contributed to the definition of the proposed study area as the model has been developed with specific consideration having been given to this new source of O-D data.

2 Existing Conditions \& Data

2.1 Traffic Data

A number of site surveys have been undertaken by both Arup and WCC, specifically with the purpose of understanding conditions within the proposed model area. These surveys have consisted of both formal scheduled surveys and ad-hoc network performance reviews undertaken during both the AM and PM peak periods.

In addition to site observations a series of counts have been collected across the study area. In total 9 link counts and 38 turn counts have been used for the purpose of model calibration.

An additional 7 link counts were retained for the purposes of model validation.
An overview of the locations of the calibration and validation counts used for the purposes of the model development have been illustrated within the following Figure 2 and Figure 3 for calibration and validation respectively.

Figure 2 - Calibration Survey locations

Figure 3 - Validation Survey locations

$2.2 \quad$ Journey Time Surveys

In addition to the retention of link counts for the purposes of model validation, journey time surveys were undertaken.

The surveys were undertaken by direction, split using consistent timing points, during Thursday $3^{\text {rd }}$ October 2013 across the route illustrated within Figure 4.

Figure 4 - Journey time Survey Route \& Timing Points

This data was reviewed and compiled for the purpose of model validation.

2.3 Queuing Analysis

Information on the queuing levels experienced during the peak periods, at a number of locations, was also surveyed. This information was collected in the form of maximum queue lengths in vehicles, at 5 minute intervals for both AM and PM model periods.

The queuing surveys were collected at 5 specific locations as identified within the following Figure 5:

Figure 5 - Queue Survey Locations

2.4 Demand Data

As has been mentioned previously, an origin-destination survey was undertaken across Warwick between the 7th of July 2012 and 13th July 2012. The survey was carried out across two concentric cordons, with one inner town and one outer town cordon boundary having been defined.

The purpose of two cordons was to ascertain the types of trip pattern undertaken across the entire area and allow through trips (trips travelling through the entire network) to be captured and enumerated at the same time. In order track vehicle movements through the cordons, it was identified that Bluetooth Vehicle Tracking could provide an efficient solution.

The post-processed data that was refined as a result of this survey was identified as the appropriate starting point for the development of a refined Prior Matrix for the study area. The outcomes from this survey were recorded within a separate Report which has been provided within Appendix E of this report. Details on how
this information was translated into O-D movements across the model have been provided within Section 4 of this report.

The cordon sites for which the data was collected are illustrated within the following Figure 6:

Figure 6 - Bluetooth Cordon Locations

3 Base Model Development

3.1 Time Periods

The model has been developed to be inclusive of both AM (07:00 to 10:00) and PM (16:00 to 19:00) time periods. In line with WCC requirements these have been modelled using discrete hourly periods within the PARAMICS model. This has resulted in the following periodic configuration:

- Period 1: 07:00 to 08:00
- Period 2: 08:00 to 09:00
- Period 3: 09:00 to 10:00
- Period 4: spare
- Period 5: 16:00 to 17:00
- Period 6: 17:00 to 18:00
- Period 7: 18:00 to 19:00

3.2 Network Extent

Figure 7 illustrates the coverage of the model was defined by the scope of the study area.

Figure 7 - Model Extent

3.3 Link Categories

The link categories adopted within the modelling have been carried forward from the WLA model and are consistent with the approach adopted to link hierarchy in that model.

The attributes of the categories used in the model are depicted in Table 1 below:
Table 1 - Category attributes

Cat.	Speed	Width (\mathbf{m})	Lanes	Type	Cost factor
$\mathbf{1}$	30	3.7	1	Urban major	1
$\mathbf{2}$	30	7.3	2	Urban major	1
$\mathbf{3}$	30	11	3	Urban major	1
$\mathbf{5}$	30	3.7	1	Urban minor	1
$\mathbf{6}$	30	6	2	Urban minor	1
$\mathbf{7}$	20	3.7	1	Urban minor	1
$\mathbf{8}$	20	7.3	2	Urban minor	1
$\mathbf{9}$	40	3.7	1	Urban minor	1
$\mathbf{1 0}$	40	3.7	1	Urban major	1
$\mathbf{1 1}$	40	7.3	2	Urban major	1
$\mathbf{1 2}$	40	11	3	Urban major	1
$\mathbf{1 6}$	40	3.7	1	Highway minor	1
$\mathbf{2 0}$	60	8	2	Highway major	1
$\mathbf{2 4}$	70	8	2	Highway major	1
$\mathbf{2 7}$	60	4	1	Urban major	1
$\mathbf{2 8}$	60	8	2	Urban major	1
$\mathbf{3 6}$	30	3.7	1	Urban major	0.8
$\mathbf{3 7}$	30	7.3	2	Urban major	0.8
$\mathbf{3 8}$	20	3.7	1	Urban minor	2
$\mathbf{4 0}$	30	3.7	1	Urban major	0.8
$\mathbf{4 1}$	30	7.3	2	Urban major	0.8
$\mathbf{4 2}$	30	3.7	1	Urban minor	1.2
$\mathbf{4 3}$	30	7.4	2	Urban minor	1.2

Figure 8 - Link Categories

3.4 Cost Factors

Cost factors serve as an additional means of influencing route choice within a model. The Good Practice Guide ${ }^{1}$ recommends the use of cost factors as being valid in the following cases:

- To reflect signposting and a level of road hierarchy beyond that afforded by the major/minor link classification;
- To account for site specific factors that may make a route less attractive to drivers, e.g. on-street parking, narrow road, etc.
- As shown in Figure 9, the majority of roads have been assigned a cost factor of 1 , with some minor routes around Warwick Town Centre having an increased cost factor of 2 . This increased rate results in drivers finding these routes half as attractive as those with a cost factor of 1 . This is turn means these routes will be less utilised.

[^0]Figure 9 - Cost factors

3.5 Road Hierarchy

Major/Minor Links

Road hierarchy is used to alter the cost of travelling on particular links. Whether a link has been classified as major or minor will have a direct impact on the perceived cost of using that link. Major links are assumed to be signposted, so the true cost of travelling along them is known to both familiar and unfamiliar drivers whilst the cost of travelling along minor links is perceived as being twice the true cost for drivers who are unfamiliar.

The classification of major and minor links within the model network was defined primarily by the road classification and is shown in Figure 10:

Figure 10 - Minor/ Major links

Urban/Highway Links

Defining a link as urban or highway will also have an impact on vehicle behaviour within the model. On highway links vehicles will demonstrate motorway behaviour, some examples include:

- Using the outside lanes for overtaking
- Merging / diverging rather than getting into lane immediately
- Greater speed differential (I.e. a larger willingness to exceed the speed limit)
- Lane based speed desegregation (I.e. slower speeds in lane 1 and faster speeds on lanes 2, 3 etc)

On urban links vehicles exhibit urban behaviour such as getting into lane immediately on approach to junctions, giving-way at priority junctions, and a lower speed differential.

Prior to the latest release of PARAMICS (version 2011.1) hazard propagation on both highway and urban links was limited, on highway links only a single hazard was observed at a time. This meant that links which contained a high number of junctions were best coded as urban. However, in the latest release this has now been remedied and it is understood that hazard propagation is limited only by the signposting at the node from which the hazard extends back.

Speed Limits

Speed limits have been coded as per the following figure and reflect current site conditions and this has been presented within Figure 12.

Figure 11 - Urban/ highway Link Classification

Figure 12 - Network Speed Limits

3.6 Zone Development

The zoning system adopted within this model was developed to be hierarchical and based on the system used to derive the cordon matrices from the Warwick and Leamington Strategic model.

The zone system was initially transposed directly from the WLWA model network. Once the transposition was completed the zones outside the study area were then removed.

External zones were then included within the model to cover the external loading points created as a result of the cordoning process. In addition some of the zones were simplified to either increase the coverage of the zones or to enable refined and simplified routeing considerations to be adopted within the model network.
The zones were then classified into three broad categories:

- Central - Zones which are considered to be within the town centre boundary
- Outer - zones outside the inner town centre boundary
- External - Zones which represent the external loading points across the model network.

The resultant zone system, and associated classifications, adopted within the model is shown in the Figure 13.

Figure 13 - Zone classification

3.7 Traffic Signals

The following junctions are signalised within the model network:

- A4177/ Old Budbrooke Road
- A425/ Vittle Drive/ Ansell Way
- Theatre Street/ Market Place
- A425/ Jury Street
- A429/ Weston Close/ A445
- A445/ Pickard Street
- A445/ Tesco entrance

The signal timings for these junctions were included in the model network that was provided by WCC and these were deemed sufficient for the purposes of model calibration. As well as these, there are also signalised pedestrian crossings within Warwick Town Centre that have been included in the model network based on the same principle.

4 Matrix Development

4.1 Overview

In common with all other traffic model applications an Origin Destination (O-D) matrix of travel demand through the network is required. This matrix is estimated through the PARAMICS Matrix Estimation (ME) module. The PARAMICS ME module requires three key elements for each individual model period in order to assign an O-D matrix. These are:

- A Survey File
- A Routeing File
- A Prior Matrix

The PARAMICS ME combines these elements and produces an estimated matrix for each hourly period under consideration. This is not the final matrix as dynamic assignment and model network calibration parameters are not considered during this stage. The assigned link flows do consider these elements and thus the validation is based on assigned flows rather than matrix estimated flows. The estimated matrix is therefore subject to calibration once it has been assigned to the network.

The survey file is derived from observed count data, recorded from surveys and manipulated through a spread sheet. This then provides a 'target' against which the PARAMICS ME module can attempt to balance the matrix.

Survey files were developed for each specific model period and split by vehicle type. Cars and LGVs were combined into the first survey file whilst OGV1 and OGV2 were combined in the second. Segregating the survey file by vehicle type allows tiered matrices to be estimated using specific count data and routing files for specific vehicle types. In this case a two tier approach was taken to the production of assignment matrices.

- Matrix 1: Controls the estimation of car and lights goods vehicle types
- Matrix 2: Controls the estimation of heavy goods vehicle types.

These initial matrix levels were adopted to control the estimation of the two different vehicle classifications. Post-estimation the matrices were divided into further sub-categories. This process is detailed towards the end of this section.

The routeing file utilised in Matrix estimation was a PARAMICS generated Pija file. The Pija file is generated by assessment of 100 routeing tests, assigned to every O-D pair. This information is used to generate a set of routes through the network. The routing for each individual O-D pair is recorded and assigned within the ME process.

4.2 Generalised Cost Equation (GCE)

The generalised cost equation used during the development of a PARAMICS model has a direct effect on the way vehicles route through the network. As a result the generalised cost equation that is adopted throughout the course of the model development should be defined in advance of Matrix Estimation.

Since the model was cordoned directly from the WLWA PARAMICS model a consistent GCE has been adopted between the model scenarios.

As a result, the GCE applied during the development of the Warwick Town PARAMICS model is as follows:

$$
G C E=1.00 \mathrm{~T}+0.65 \mathrm{D}(\mathrm{~min} / \text { mile })+0.00 \mathrm{p}
$$

Where: $\quad \mathrm{T}=$ Time
D = Distance
$\mathrm{P}=\operatorname{Cost}($ toll $)$

4.3 Prior Matrix Development

The primary use of the Matrix Estimation module is to refine and reflect the existing demand conditions reflected in the prior matrix. It is important that the prior matrix reflects a good approximation of traffic distributions and volumes which are representative of the study area.

The primary source of data used to inform the development of a prior matrix was the Origin Destination data collected through the Bluetooth survey, further detail on this survey is provided within the Warwick Bluetooth Survey - Data Analysis Report which is contained within Appendix E.

One specific outcome of the distribution analysis was the production of period specific distribution matrix which identified the relative proportions of trips travelling between the various cordons points defined within the study area.

In total 14 separate distributions were identified, one for each of the cordon locations. These were however, aggregated into distribution regions for the purpose of developing the prior matrix. The reason behind the aggregation is that the distributions at each of the cordon locations, when considered in isolation, are not necessarily representative of the likely distribution of trips that may occur when considering each of the model zones on an individual basis.

In order that this process could be simplified, a series of distribution regions where defined which related directly to the model zone structure. To further simplify the process the zones within the Central region were assigned a distribution derived from combining all of the central cordon points and each of the outbound distributions therefrom.

Trips between zones contained within the Central region where removed entirely from the matrix as the likelihood of these trips occurring in the first place is low and, furthermore the magnitude of any trips that do occur would likely be too small to be considered of material concern. Trips were the re-input into the model matrix only on occasions where the survey data indicated that they existed. This was done in order that the number of errors identified during the Matrix Estimation process could be minimised.

The distribution regions defined across the model area have been illustrated within the following Figure 14

Figure 14 - Model Distribution Regions

Each of the zones within the model was then assigned a distribution based on its location relative to the regions defined within the previous Figure.

Once a suitable distribution had been assigned to each zone the next step was to assign an appropriate level of trip generation. As a result trip generation levels for each of the zones were defined based on one of three data sources subject to the appropriateness of each for the intended purpose:

- Proximate survey data
- Address point information, furnessed by established trip rates
- Original WLWA zone totals

The preferred source of trip generation information was count data. Where there was no appropriate count data to adopt the secondary choice was address point data (factored using WCC trip rates), in areas where this was inappropriate, i.e. because the zone represented a mixture of land uses or similar, then the original WLWA model zone totals were used as a guide for the overall trip generation levels.

The source of trip generation and therefore the primary zone constraint, as assigned to each of the individual zones within the model is identified as illustrated within Figure 15.

The outcome from this process was an initial prior matrix. The only amendments that followed were in response to the errors in the prior matrix identified during the matrix estimation process. Primarily these occur when a value for a movement could not be estimated which, in turn, is as a result of the O-D information being missing from the prior matrix. When these errors were identified additional values were input into the prior matrix to match the missing movements.

Figure 15 - Zone Constraints

4.4 HGV Prior Matrices

It is good practice to model the assignment of Heavy Goods Vehicles (HGVs) explicitly using a separate level matrix to which only OGV1 and OGV2 vehicle types can be assigned. This matrix can be estimated by creating a survey file relating specifically to the observed HGV movements within the model network.

HGV vehicles within the network also tend to be less familiar with the area than the car and LGV trips and as a result tend to stick to sign-posted routes. To account for this a lower level of familiarity is set and a routing file is generated which uses the HGV familiarity level and subsequently perceived cost factors to populate the routing information.

Just as HGVs are likely to route differently within the model the origin and destination of HGV trips are also likely to be more refined, making application of the Prior matrix derived for the estimation of cars and light goods vehicles as unsuitable for this purpose.

A more representative HGV prior matrix was produced by sectoring the matrix and seeding the sector to sector movements relative to the likelihood of HGV movements being created.

The initial sector to sector movements adopted for this process and the weighted values assigned to these movements are outlined within the following Table 2:

Table 2 HGV Seeding

	HGV Value
Central to Central	0
Outer to Central	0
External to Central	1
Central to Outer	0
Outer to Outer	0
External to Outer	20
Central to External	1
Outer to External	20
External to External	1000

The above values include the divisor which was set at 100 .

4.5 Constraints

Constraints are a vital part of almost all Matrix Estimation (ME) processes. Potentially the only exception is if ALL the movements into and out of ALL zones have a count on them. Constraints can be used to:

- Prevent known movements / robust data in the prior matrix from reducing
- Prevent ME from increasing unwanted trips (e.g. short trips between adjacent zones)
- Develop a robust ME process (e.g. by developing constraints based on trip type / prior matrix data sources)

A tiered approach to the application of the constraints was applied whereby the type and level of constraint that was applied was informed by the initial value assigned to the O-D movement and also the sector to sector movement being considered. For example small O-D's between adjacent sectors were constrained by absolute values, since percentages would have no impact, whilst large O-Ds making the same movement were constrained by percentages. Similarly movements to and from external zones were able to alter by a larger amount than the movements between the internal sectors.

O-D values were classified as either small medium or large base on the following criteria:

- Small O-D: 15 or less
- Medium O-D: between 15 to 50
- Large O-D: greater than 50

The type of constraint applied was either an absolute change (ABS) or a percentage (\%) change subject to the initial O-D value and the movement being considered.

An overview of the constraints that were adopted during the Matrix Estimation process is provided within the following Table 3:

Table 3 - ME Constraints

	Small OD		Medium OD		Large OD	
OD Type	Type	value	Type	value	Type	value
Central to Central	ABS	0	ABS	0	ABS	0
Outer to Central	ABS	15	ABS	50	$\%$	40%
External to Central	ABS	30	ABS	75	$\%$	60%
Central to Outer	ABS	15	ABS	50	$\%$	40%
Outer to Outer	ABS	15	ABS	50	$\%$	40%
External to Outer	ABS	45	ABS	100	$\%$	40%
Central to External	ABS	30	ABS	75	$\%$	60%
Outer to External	ABS	45	ABS	100	$\%$	60%
External to External	None		None		None	

4.6 Matrix Segregation

Demand to be assigned within the model was estimated based on 2 matrix levels, matrix level 1 was used to represent light vehicles whilst matrix level 2 was used to represent HGVs.

Matrix Level 1: Cars and Lights
Matrix Level 2: HGV trips

4.7 Base Matrix Estimation

Upon the development of the survey routing and matrix files, the PARAMICS ME module was then used to estimate 2 tier matrices for each individual modelled hour. As mentioned previously, Matrix Estimation does not calculate a demand matrix; it is used to refine the existing prior matrix against observations.

Matrix estimation is an iterative process in which the estimated matrix is assigned to the model for checking. Corrections are made within the prior matrix and the process is rerun. During the actual estimation process itself PARAMICS carries out internal run iterations which calculate and revise the output demand matrix at each step.

In an effort to ensure that the ME module does not output an estimated matrix which is far removed from the original prior matrix the number of iterations undertaken during ME was restricted to 15 . The target was set in such a way that 90% of the estimated values which, when compared to the observed, return a GEH value of 6 or less for Matrix level 1 (i.e. cars and lights) and 80% for Matrix level 2 (i.e. HGVs).

This criterion was achieved for all matrices associated with each model period.

4.8 Demand Totals

The trip totals by matrix level, assigned within the model are provided within the following Table 4:

Table 4 - Assigned Demand Totals

Level	$\mathbf{0 7}$ to 08	$\mathbf{0 8}$ to 09	$\mathbf{0 9}$ to $\mathbf{1 0}$	$\mathbf{1 6}$ to $\mathbf{1 7}$	$\mathbf{1 7}$ to $\mathbf{1 8}$	$\mathbf{1 8}$ to $\mathbf{1 9}$
M1	12229	18515	12499	15526	17587	13111
M2	145	219	254	131	122	100

4.9 Sector to Sector Comparisons

As has been outlined within the previous Section 4.5 of this report, a number of factors have been used to constrain the movement of trips across the model network. One of these factors has been the sector movement. The difference in these values, pre and post estimation and also how they compare to the predictions that were estimated from the original O-D survey information has been presented within the following Table 5 and Table 6 for the AM and PM peak hours respectively:

Table 5 - AM Sector to Sector Comparisons

	O-D Survey		Prior Matrix		Output Matrix	
	$\%$	ABS	$\%$	ABS	$\%$	
Central/Central	n/a	26	0.2%	0	0.0%	
Central/Outer	12.0%	694	5.8%	634	3.4%	
Central/External	12.0%	1285	10.6%	1189	6.4%	
Outer/Outer	n/a	1425	11.8%	1939	10.5%	
Outer/External	40.0%	5767	47.8%	6749	36.5%	
External/External	n/a	9677	23.8%	8003	43.2%	

Table 6 - PM Sector to Sector Comparisons

	O-D Survey		Prior Matrix		Output Matrix	
	$\%$	ABS	$\%$	ABS	$\%$	
Central/Central	n / a	30	0.2%	0	0.0%	
Central/Outer	18.0%	738	4.8%	577	3.3%	
Central/External	8.0%	1356	8.7%	1157	6.6%	
Outer/Outer	n / a	1252	8.1%	1854	10.5%	
Outer/External	48.0%	7605	49.0%	5959	33.9%	
External/External	n / a	11344	29.3%	8039	45.7%	

With the exception of the intra-external movements, which vary significantly as they haven't been constrained, the values for each movement before and after ME are comparable which is a useful indicator of the level of change incurred as a result of the ME process.

In addition to the previous comparisons a review of the composition of the matrices, in terms of the sector movements, both before and after ME has also been undertaken. The proportion of each of the movements, less the external movements, that comprise the overall matrix have been compared within both the Prior and the output matrix. This figure, alongside the level of change between each O-D movement between the two matrices, has been presented for the AM and PM time periods within the following Table 7:

Table 7 - Sector Changes Pre \& Post ME

	AM (08:00 to 09:00)			PM (17:00 to 18:00)		
	Prior	Output	Variation	Prior	Output	Variation
Central/Central	0.28%	0.00%	0.28%	0.27%	0.00%	0.27%
Central/Outer	7.55%	6.03%	1.52%	6.72%	6.05%	0.68%
Central/External	13.97%	11.31%	2.65%	12.35%	12.12%	0.23%
Outer/Outer	15.49%	18.45%	2.95%	11.40%	19.42%	8.02%
Outer/External	62.71%	64.21%	1.50%	69.25%	62.42%	6.83%

The previous table reveals that the composition of the matrices before and after ME is not subject to a significant level of change. The AM variation levels are less than 3% for all movements whilst the differences within the PM matrix rise to 8% when considering the movements between zones within the Outer Region. Furthermore, the difference is as a result of a reduction in the total trips making those movements between the prior and output matrix rather than an increase which could be indicative of 'trip dumping' during the ME process.

4.10 Vehicle Fleet Mix

Each matrix level can be used to assign different vehicle types as necessary dependent upon the method of matrix production and the purpose of that matrix. Analysis of the mix of vehicles entering the model network was undertaken, at key locations, to ensure that the proportion of vehicles contained within the model network reflect, as closely as possible, those that have been observed.

A summary of the resultant vehicle type proportions assigned within the model is provided within the following Table 8

Table 8 - Hourly Vehicle Type Proportions

Class	Type	$\mathbf{0 7}$ to $\mathbf{0 8}$	$\mathbf{0 8}$ to 09	$\mathbf{0 9}$ to $\mathbf{1 0}$	$\mathbf{1 6}$ to $\mathbf{1 7}$	$\mathbf{1 7}$ to $\mathbf{1 8}$	$\mathbf{1 8}$ to $\mathbf{1 9}$
	Cars	85%	89%	88%	89%	92%	92%
	LGV	15%	11%	12%	11%	8%	8%
HEAVIES	OGV1	27%	16%	13%	16%	15%	17%
	OGV2	73%	84%	87%	84%	85%	83%

Since the ratio of cars and lights across the entire model period was approximately 9:1 generalised 90% and 10% proportions of cars and lights respectively where
considered sufficient for the purposes of allocating vehicle type proportions to matrix level two (SRN traffic)

4.11 Vehicle types

The table below highlights which vehicle types were applied to each matrix level:
Table 9 -Vehicle Types

Matrix	Number	Type	Trip purpose	Familiarity (\%)	Perturbation (\%)	Colour
1	1	Car	Background	70	5	
1	12	LGV	Background	60	5	0
2	14	OGV2	Other	40	5	0
2	15	OGV1	Business	40	5	0

The resultant mix of fleet assigned within the AM and PM model periods is summarised within the following figures for the AM and PM periods respectively.

Figure 16 - AM Model Period (07:00 to 10:00) Vehicle Fleet Mix

Figure 17 - PM Model Period (16:00 to 19:00) Vehicle Fleet Mix

5 Network Calibration

5.1 General

Model calibration and validation are necessary to achieve accuracy in modelling. Model calibration is defined as the process by which individual components of a simulation are adjusted to ensure model performance provides an accurate representation of the observed traffic data used in model development. Model validation is the process of checking the calibrated model against observed traffic data independent of the model development process. The model calibration and validation has been undertaken in line with the guidance outlined in DMRB Volume 12 and 12a and subsequent Interim Advice note (IAN36/01) as well as the HA Guidelines for the Use of Microsimulation Software (July, 2007).

The base model has been calibrated and validated for the AM (07:00 to 10:00) and PM (16:00 to 19:00) time periods. The geometrical data included in the model has been obtained from site surveys and the use of an Ordnance Survey (OS) data overlay, against which the model network has been coded. Ariel photographs were also used as a reference to ensure the correct layout of junctions as well as to confirm stop line placement.

The initial model network was developed using the existing WCC Europa Way Corridor model as the basis for model development.

5.2 Key Microsimulation Parameters

The key global driver behaviour parameters used in the model calibration are included in Table 10. Default driving parameters are included for all three modelled periods. To avoid modelling bias, the settings for these parameters should remain constant for the existing and proposed models.

Table 10- Key Global Microsimulation Parameters

Parameters	Value/Selection
Mean Headway (sec)	1 second (Default)
Minimum Gap (m)	2 metres (Default)
Driver Behaviour (Aggressiveness / Awareness)	Default
Link Categories	Default
Vehicle Speeds	Maximum desired speed set at speed limits in force.
Seeds run per Model	10 with Random Seeds

5.3 Routing and Feedback Parameters

Feedback Interval

Setting a feedback interval that is longer than 2 or 3 minutes duration has the potential to result in too many vehicles switching routes in one go. Delay along a route is given a greater amount of time to increase before vehicles elect to reassign and, furthermore, a number of vehicles have missed the opportunity to
reassign by the time the level of delay is at such a magnitude that the wholesale reassignment becomes possible.

The feedback interval was set to 2 minutes because there is a constant need for vehicles to assess the levels of delay along the available routes in order that the right balance of reassignment can be achieved.

Feedback Method

The actual method of feedback calculation was also reviewed. In this case it was decided that the most appropriate method of feedback calculation that should be adopted was the 'Aggression and Awareness Method' (AggrAw).

The AggrAw method of applying feedback uses the sum of each vehicles aggression and awareness values to determine the propensity to reroute. Thus, vehicles with a high level of both will have a greater propensity to switch routes. Vehicles in the middle of the distribution are likely to allow delay to build up to higher levels before reassigning whilst vehicles with low levels of both will only reroute once delay levels have become extremely high. It should be noted that this method of feedback only affects familiar drivers (70% of Lights and 40% Heavies).

The AggrAw method of feedback reduces the effects of the overall reassignment process as it shifts some drivers early enough so that the level of delay that is unacceptable to the 'mid distribution' drivers takes significantly longer to be realised, at this point the drivers that have already switched may have caused sufficient queuing on the alternative route that the switch can become less pronounced.

In addition to the application of the AggAw feedback method some fine tuning of the routing and assignment parameters was undertaken within the model. The refinement was undertaken through iterative amendments to the feedback and scale factors during the calibration process.

Feedback Factor

Links that produce a low cost in an empty network, and hence will be a popular route choice, will produce a higher cost once congestion starts to build up, making alternative routes more attractive. As the congestion reduces, the costs will also reduce, and the route will become attractive once more.

The feedback interval controls the frequency with which this information is updated, and made available to vehicles on the network whilst the Feedback Factor is the controlling coefficient for the smoothing filter associated with the feedback process. As a result a larger feedback factor will result in a greater propensity for vehicles to reroute whilst a lower feedback factor will reduce the propensity for vehicles to reroute, which, in turn, means that larger queues are likely to form before vehicles will elect to reassign away from the chosen route.

The default feedback factor is 0.5 but within this model this has been reduced to 0.4. The purpose of this change is that it enables larger queues to form on the network.

Scale Factor

The scale factor allows the delay in the network to be altered before vehicles perceive it. A scale value greater than 1.0 will increase the perceived delay, while a scale value less than 1.0 will decrease it. Increasing the perceived delay has the effect of causing the percentage of familiar vehicles re-routeing to increase faster. Decreasing the perceived delay will cause the percentage to increase more slowly.

For the purposes of developing this model the scale factor was reduced from the default value of 1.00 to $\mathbf{0 . 7 5}$.

These changes were observed to have an impact on the queuing levels within the model network, in so far as the application of these parameters resulted in levels of queuing comparable to those which had been observed on street. During the review process, whereby the overall level of model calibration was checked through the process of comparing modelled and observed flows, the refinements were also noted as having a positive impact on the overall levels of calibration.

5.4 Network Calibration

Calibration parameters have also been applied to specific sections of the network to allow a better representation of the individual junctions, aside from the repositioning of the stop lines, the main Calibration parameters applied within the model, by junction or section, include the headway, visibility and gap acceptance parameters in the form of Path Merge, Path Cross and Lane Cross, respectively.

Headway

Application of a headway factor reduces the gap between vehicles proportionally to the headway factor. This makes vehicles more aggressive in their tendency to 'bunch' together in areas where this has been applied, e.g. a headway factor of 0.5 reduces the headway between vehicles to 1 m (by 50%) where applied whilst a headway factor of 2 increases the headway between vehicles to 4 m (by 100%).

Visibility

Default visibility within PARAMICS is set to 0 m any increase on this will increase the distance from which the vehicles will begin to check whether or not their entry into a junction is unopposed. Application of visibility within PARAMICS is a standard mechanism through which the throughput of individual junction entry arms can be increased.

Gap Acceptance

A reduction in gap acceptance from the default of 4 (and 3 for Lane Cross) reduces the gap which vehicles deem acceptable between themselves and oncoming vehicles when entering a junction.

A reduction in gap acceptance from the default of 4 (and 3 for Lane Cross) reduces the gap which vehicles deem acceptable between themselves and oncoming vehicles when entering into a junction. The variables which are controlled by the link modifiers tab are essentially 'buffer' values as this time is
added to the time it takes a vehicles tail to clear the collision point to give the true cap acceptance value.
The true gap acceptance values are therefore set as a minimum of 6^{2} (and 5 for lane cross). Altering these parameters tends to be done on an ad-hoc basis as a means of calibration and in some circumstances it has now become necessary to look at negative gap acceptance parameters which, when applied, appear to use some of the residual time allocated within the gap acceptance parameters rather than just the 4,4 and 3 that can traditionally be amended.

The need to apply negative gap acceptance parameters to achieve model calibration appears to be increasing in frequency and has done since the PARAMICS version release of 2008 onwards. This calibration technique has been accepted in a number of independent audits including SIAS. It is also likely that driver behaviour is changing and vehicles are becoming more aggressive than they were around 3 decades ago when the first commercial version of PARAMICS was released.

Because of the aforementioned reasons the application of negative gap acceptance is deemed an appropriate response to the need to increase junction throughput to match observed levels.

5.5 Network Calibration

Visibility

The visibility of specific links is shown in Figure 18.

Gap acceptance

The gap acceptance of the links within the model are shown in Figure 19.

[^1]Figure 18 - Link Visibility

Figure 19 - Link gap acceptance

Headway

As mentioned previously, amending the headway factor that has been applied to a link will alter the distance between vehicles from the default value (2m) dependent upon the factor applied.

When undertaking a number of site surveys, for both this model and historically, it has been noted that, in some areas, vehicles appear to accept larger gaps between them and the car in front than in other areas. As shown in Figure 20, the headway for the entire model has been amended as follows:

Figure 20 - Link Headway

Cost Factors

Cost factors are an additional calibration tool which can be adopted to influence the route choice. The Good Practice Guide ${ }^{3}$ recommends the use of cost factors as being valid in the following instances:

- To reflect signposting and a level of road hierarchy beyond that afforded by the major minor link definition
- To account for site specific factors that may make a route less attractive to drivers, e.g. on-street parking, narrow roads, etc.

An illustration of the location of relevant cost factors is provided within the following figure:

[^2]Figure 21 - Link Cost factors

5.6 Vehicle Release Profiles

Wherever possible the profiles within the model have been derived directly from proximate count data. This approach is, however reliant upon data sites being in close proximity to the zones and that that data has been disaggregated into, at least, 15 minute intervals.

In certain cases, for the reasons outlined previously, it is not always possible to derive specific profiles for zones. When this situation occurs it is necessary to derive more general profiles to control the release of vehicles into the model network.

For this model two proxy profiles were derived. Both profiles were derived by aggregating the count data across the inner cordon points. The first profile was derived using all of the counts perceived as exiting the inner cordon and entering into the outer region. This profile was termed 'OUT'. This profile was assigned to the zones inside the central region for which no alternative profile was available.

The second profile was termed ' IN ' and was calculated by aggregating the count data travelling in the opposite direction. This profile was assigned to all of the zones within the outer region for which no alternative existed. This has been illustrated within the following Figure 22.

Figure 22 - Cordon Profiles

6 Flow Calibration

6.1 Count Data

In total 7 link counts and 29 Junction counts were utilised during the model calibration process.

6.2 The GEH Statistic

The observed flows were checked against the modelled flows on the network and the level of convergence between flows has been calculated. The initial assessment measure is the GEH statistic, which is a common comparative measure in this context. The formula of the GEH statistic is as follows:

$$
\mathrm{GEH}=\sqrt{\frac{(\mathrm{O}-\mathrm{E})^{2}}{0.5(\mathrm{O}+\mathrm{E})}}
$$

Where
$\mathrm{O}=$ Observed flow
$\mathrm{E}=$ Modelled assigned flow
The GEH is a measure that includes both the absolute and the relative difference. The convergence is considered acceptable if the GEH statistic is less than 5 in 85% of data (DMRB, Volume 12).
Calibration and validation results are based on an average of ten random seed runs per time period. A full summary of the comparisons of the Modelled and Observed link and turn count data is available in Appendix A.

6.3 DMRB Criteria

The model calibration and validation process has been carried out, where possible, in accordance with the criteria specified within DMRB Vol. 12 (Traffic Appraisal Manual). These guidelines are summarised in the following table:

Table 11 - DMRB Requirements

Criteria and Measure	Acceptability
Assigned Hourly Flows	
Individual flows within 100vph (flows<700vph)	85% of all cases
Individual flows within 15\% (flows 700- 2700vph)	85% of all cases
Individual flows within 400vph (flows>2700vph)	85% of all cases
GEH statistic: individual flows GEH<5	85% of all cases
Modelled Journey Times	
Times within 15\% (or 1 minute, if higher)	85% of all cases

DMRB Vol12

6.4 GEH Calibration

A significant proportion of the count data used for model calibration was collected in the form of turn counts from Manual Classified Counts. As a result the count calibration process adopted was reflective of both links and turn counts within the model.

This results in around 275 data samples being used as opposed to 18 if link counts are used in isolation. Therefore GEH comparisons were made using both observed link counts and observed turn counts.

A summary of the overall level of model calibration achieved is presented within the following Table 12 and Table 13 for the AM and PM respectively:

Table 12- AM Count Comparison - GEH

	07:00 to 08:00		08:00 to 09:00		09:00 to 10:00	
Counts:	273		275		278	
GEH ≤ 5	244		239		256	
\%	89.38\%		86.91\%		92.09\%	
$\mathrm{GEH} \leq$						
3	204	74.7\%	206	74.9\%	223	80.2\%
4	233	85.3\%	224	81.5\%	243	87.4\%
5	244	89.4\%	239	86.9\%	256	92.1\%
6	256	93.8\%	255	92.7\%	271	97.5\%
7	263	96.3\%	263	95.6\%	274	98.6\%
8	268	98.2\%	266	96.7\%	275	98.9\%
9	268	98.2\%	267	97.1\%	276	99.3\%
10	271	99.3\%	270	98.2\%	278	100.0\%

Table 13- PM Count Comparison - GEH

Analysis of the aforementioned tables reveals that the level of calibration that has been achieved within the model is of a sufficiently high standard to enable the
model to be declared fit for purpose. As the network conditions within the PM are less prone to congestion effects then it is not surprising that such a high level of calibration is achievable within the PM time period.

Analysis of instances where the GEH is higher than 10 reveals that less than 1% of all comparisons return a GEH of greater than 10 .

A full breakdown of the GEH comparisons has been provided within Appendix A of this report.

6.5 Link Calibration

As an additional check, the entry flows have been aggregated for all links that comprise the turning count surveys. The result of this is to provide an overall level of calibration in the context of purely link flows, since a large number of small turning counts can potentially bias the results of the previous calibration check. An overview of the outcome of this process is provided within the following Table 14 and Table 15 for the AM and PM respectively.

Analysis of these tables reveals that, when considering aggregate link flow levels in isolation, the model demonstrates a high level of calibration across all of the modelled hours.

Table 14- AM Count Comparison - GEH

	07:00 to 08:00		08:00 to 09:00		09:00 to 10:00	
Counts:	156		156		156	
$\mathrm{GEH} \leq 5$	141		140		140	
\%	90.38\%		89.74\%		89.74\%	
$\mathrm{GEH} \leq$						
3	109	69.87\%	117	75.00\%	127	81.41\%
4	132	84.62\%	131	83.97\%	137	87.82\%
5	141	90.38\%	140	89.74\%	145	92.95\%
6	146	93.59\%	147	94.23\%	151	96.79\%
7	149	95.51\%	152	97.44\%	152	97.44\%
8	151	96.79\%	153	98.08\%	153	98.08\%
9	152	97.44\%	153	98.08\%	155	99.36\%
10	153	98.08\%	154	98.72\%	155	99.36\%

Table 15- PM Count Comparison - GEH

	16:00 to 17:00		17:00 to 18:00		18:00 to 19:00	
Counts:	155		156		155	
GEH ≤ 5	146		152		139	
\%	94.19\%		97.44\%		89.68\%	
$\mathrm{GEH} \leq$						
3	122	78.21\%	135	86.54\%	114	73.08\%
4	136	87.18\%	145	92.95\%	127	81.41\%
5	146	93.59\%	152	97.44\%	139	89.10\%
6	150	96.15\%	154	98.72\%	146	93.59\%
7	153	98.08\%	155	99.36\%	148	94.87\%
8	153	98.08\%	155	99.36\%	152	97.44\%
9	154	98.72\%	155	99.36\%	152	97.44\%
10	154	98.72\%	155	99.36\%	152	97.44\%

6.6 Flow Calibration

In order that a comparison of the observed and modelled flows could be undertaken according to DMRB flow calibration criteria, turn counts on each link were aggregated to provide link counts of a sufficiently robust standard to allow the comparisons to be made. Flow calibration checks should not be undertaken using a high number of low observed values as the standard is too easily achievable. It is very rare that a large number of turn counts will exist which are greater than 700 vph and, in reality a very large number will be under 100. This means that a modelled count could be 100% out from the observed and still meet the required flow criteria.

As a result the flow calibration levels were assessed using the same aggregate link data that was presented within the previous Section 6.5 of this report. The outcome of these comparisons, for both AM and PM model periods, has been presented within the following Table 16 and Table 17 respectively.

Table 16 - AM Link Flow Calibration

	$\mathbf{0 7 : 0 0}$ to 08:00	$\mathbf{0 8 : 0 0}$ to 09:00	$\mathbf{0 9 : 0 0}$ to 10:00
Observed <700vph	137	123	141
Modelled within 100vph	130	109	133
\% within DMRB	94.89%	88.62%	94.33%
Pass / fail	Pass	Pass	Pass
Observed 700 to 2700vph	19	33	15
Modelled within 15\%	18	30	15
\% within DMRB	94.74%	90.91%	100.00%
Pass / fail	Pass	Pass	Pass
Total Counts	156	156	156
Total within standard	148	139	148
$\%$	94.87%	89.10%	94.87%
Pass / fail	Pass	Pass	Pass

Table 17 - PM Link Flow Calibration

	$16: 00$ to 17:00	17:00 to 18:00	$18: 00$ to 19:00
Observed <700vph	126	119	133
Modelled within 100vph	121	115	123
\% within DMRB	96.03%	96.64%	92.48%
Pass / fail	Pass	Pass	Pass
Observed 700 to 2700vph	29	37	22
Modelled within 15\%	27	37	20
\% within DMRB	93.10%	100.00%	90.91%
Pass / fail	Pass	Pass	Pass
Total Counts	155	156	155
Total within standard	148	152	143
\%	95.48%	97.44%	92.26%
Pass / fail	Pass	Pass	Pass

6.7 Queue Calibration

In addition to the comparisons against flow data, comparisons of the queuing levels within the model have also been undertaken. These comparisons have been undertaken using the queue survey data outlined within the previous Section 2.3 of this report.
Comparisons of the queuing levels were undertaken using the average maximum queue lengths, in vehicles, which was summarised for every 5 minute interval within the model period.

This meant that for every approach that was surveyed within the model 12 comparisons where made per hour meaning 36 comparisons across the model period.

The modelled versus observed queuing comparisons were undertaken using a ± 5 vehicle threshold. This meant that any instance where the modelled queue length was recorded as being within 5 vehicles of the surveyed queue length $a=$ was recorded as an acceptable match.

The outcome of these comparisons, across the AM and PM model periods are presented within the following Table 18 and Table 19

Table 18 - AM Queue Calibration

	Arm	Name	Sample	Within Criteria	Calibration level
4	A	A425 Birmingham Road, East	36	35	97\%
	B	Budbroke Road, South	36	30	83\%
	C	A425 Birmingham Road, West	36	34	94\%
5	A	A425 Birmingham Road, East	36	35	97\%
	B	Eastley Crescent, South	36	36	100\%
	C	A425 Birmingham Road, West	36	30	83\%
14	A	A46 Southbound Offslip, North	36	29	81\%
	B	A425 Birmingham Road, East	36	35	97\%
	C	A46 Northbound Offslip, South	36	29	81\%
	D	A4177 Birmingham Road, West	36	27	75\%

Table 19 - PM Queue Calibration

	Arm	Name	Sample	Within Criteria	Calibration level
4	A	A425 Birmingham Road, East	36	36	100\%
	B	Budbroke Road, South	36	33	92\%
	C	A425 Birmingham Road, West	36	35	97\%
5	A	A425 Birmingham Road, East	36	35	97\%
	B	Eastley Crescent, South	36	36	100\%
	C	A425 Birmingham Road, West	36	36	100\%
14	A	A46 Southbound Offslip, North	36	35	97\%
	B	A425 Birmingham Road, East	36	31	86\%
	C	A46 Northbound Offslip, South	36	32	89\%
	D	A4177 Birmingham Road, West	36	35	97\%

Although there is no strict guidance regarding calibration of traffic models against queue data, it is reasonable to conclude from the previous tables that queuing levels within the model are representative of those which have been surveyed.

Within the AM, in all but one instance, modelled queuing levels are within 5 vehicles of the observed levels in over 80% of comparisons across every arm. Within the PM period the over 85% of modelled queue lengths, by arm, are within 5 vehicles of observed queuing levels.

6.8 Calibration Summary

Overall it is reasonable to conclude that a high level of flow calibration has been achieved during the model development process with every comparison demonstrating a level of adherence beyond the minimum requirement outlined within DMRB.

7 Model Validation

7.1 Overview

DMRB requires that, once a model has been successfully calibrated, an independent check of the model should be undertaken using data that has not been used to inform any of the model calibration.

In this case a limited number of journey time surveys were made available to inform the model validation checks. The coverage of the journey time routes specifically dealt with the area around the A46/A4177 and the NW to SE route through Warwick town that is facilitated by the A425. As a result additional link counts were retained across the study area for the purpose of validation checks.

These link counts were selected on the basis that turn counts were available along the same corridors to inform the Matrix Estimation process meaning the counts could be retained for validation without compromising the production of the demand matrices for assignment within the model.

7.2 Link Count Validation

The locations used for link count validation have been detailed previously within Section 2.2 of this report. DMRB Guidance states that an acceptable level of link flow validation has been achieved if 85% or more of the observed versus modelled link count comparisons returns a GEH of 5 or less ${ }^{4}$.

Comparisons have been made between observed and modelled link counts across the entire AM and PM model periods. The outcome from these comparisons has been presented within the following Table 20 and Table 21 for the AM and PM model periods respectively:

Table 20- AM Link Flow Validation

	07:00 to 08:00		08:00 to 09:00		09:00 to 10:00	
Counts:	14		14		14	
GEH ≤ 5	11		12		13	
\%	78.57\%		85.71\%		92.86\%	
GEH \leq						
3	9	64.29\%	8	57.14\%	8	57.14\%
4	10	71.43\%	10	71.43\%	9	64.29\%
5	11	78.57\%	12	85.71\%	13	92.86\%
6	12	85.71\%	14	100.00\%	13	92.86\%
7	13	92.86\%	14	100.00\%	14	100.00\%
8	14	100.00\%	14	100.00\%	14	100.00\%
9	14	100.00\%	14	100.00\%	14	100.00\%
10	14	100.00\%	14	100.00\%	14	100.00\%

[^3]Table 21- PM Link Flow Validation

	16:00 to 17:00		$\mathbf{1 7 : 0 0}$ to 18:00		$\mathbf{1 8 : 0 0}$ to 19:00	
Counts:	14		14		14	
GEH ≤ 5	13		14		14	
$\%$	$\mathbf{9 2 . 8 6 \%}$		$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{1 0 0 . 0 0 \%}$		
GEH \leq						
3	10	71.43%	13	92.86%	9	64.29%
4	13	92.86%	13	92.86%	12	85.71%
5	13	92.86%	14	100.00%	14	100.00%
6	13	92.86%	14	100.00%	14	100.00%
7	14	100.00%	14	100.00%	14	100.00%
8	14	100.00%	14	100.00%	14	100.00%
9	14	100.00%	14	100.00%	14	100.00%
10	14	100.00%	14	100.00%	14	100.00%

Analysis of the previous tables reveals that the model demonstrates the necessary level of validation across both AM and PM peak hours. The only hour which does not conform to the required standard is the AM pre-peak hour where three comparisons return GEH higher than 5 .

This is not consider a material concern however because the sample size is relatively limited, meaning each comparison represents nearly 8% of the sample. Furthermore, no comparisons return a GEH of 8 or higher which means that even when the required standard has not been met the modelled flows must still be within a reasonable range of the observed flows.

7.3 Journey Time Validation

In addition to the link flow validation, validation of the model against journey times was also undertaken. Two routes were used for the validation and these have been illustrated previously within Figure 4 of this report.

DMRB states 85% or more of modelled journey times must be within 15% (or 1 minute, if higher) of observed journey times for the model to be considered as validated.

The routes were split by 12 timing points meaning that each direction was split into 11 sections. Comparison where made between the observed and modelled journey times both by each individual section as well as across the entire route.

A full breakdown of the various comparison tables has been presented within Appendix C of this Report.

The first method of checking modelled and observed journey times involved the definition of comparable journey time routes within the model area. Each route was defined to reflect the timing points used during the survey.

PARAMICS collected the time it takes for every vehicle to traverse the entire length of the path within the model period. This information is collated and then the average journey time calculated for all vehicles, across each model hour.

This exercise was undertaken for each section of the routes surveyed. Analysis of the outcome of the section by section comparison is presented within the following Table 22:

Table 22- Sectional Journey Time Validation

	$07: 00$ to $08: 00$	$\mathbf{0 8 : 0 0}$ to $09: 00$	$09: 00$ to $\mathbf{1 0 : 0 0}$	$16: 00$ to $\mathbf{1 7 : 0 0}$	$\mathbf{1 7 : 0 0}$ to $\mathbf{1 8 : 0 0}$	$\mathbf{1 8 : 0 0}$ to $\mathbf{1 9 : 0 0}$
Count	22	22	22	22	22	22
PASS	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{9 5 . 4 5 \%}$	$\mathbf{9 5 . 4 5 \%}$	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{9 5 . 4 5 \%}$	$\mathbf{1 0 0 . 0 0 \%}$
FAIL	0.00%	4.55%	4.55%	0.00%	4.55%	0.00%

The previous table demonstrates that, when comparing modelled and observed journey times, each of the individual journey time sections conforms to the required standard.

Since each of these individual sections are relatively short in length, it is reasonable to expect the majority of the sample to meet the required standard. As a result, comparisons have been made between the observed and modelled journey times across the entire route.

The outcome of these comparisons is presented, for the AM and PM periods within the following Table 23 and Table 24 respectively.

Table 23- AM Route Journey Time Validation

	07:00 to 08:00			$\mathbf{0 8 : 0 0}$ to 09:00			09:00 to 10:00		
Dir.	OBS	MOD	Status	OBS	MOD	Status	OBS	MOD	Status
EB	$08: 06$	$07: 13$	PASS	$18: 22$	$15: 29$	FAIL	$08: 39$	$08: 33$	PASS
WB	$07: 03$	$05: 34$	FAIL	$07: 57$	$06: 15$	FAIL	$07: 00$	$05: 40$	FAIL

Table 24- PM Route Journey Time Validation

	16:00 to 17:00			17:00 to 18:00			18:00 to 19:00		
Dir.	OBS	MOD	Status	OBS	MOD	Status	OBS	MOD	Status
EB	$08: 38$	$07: 44$	PASS	$10: 28$	$09: 14$	PASS	$07: 00$	$07: 17$	PASS
WB	$09: 16$	$07: 58$	PASS	$10: 06$	$08: 12$	FAIL	$07: 05$	$06: 06$	PASS

The previous Tables indicate that the model performs poorly when considering the journey times across the entire route.

In order that the reason for the discrepancies between modelled and observed journey times could be better understood a review of the observed data was undertaken which revealed the following:

- The modelled data was being compared against a relatively limited sample size, within both AM and PM model periods a maximum of 40 runs had been achieved, instantly this is halved on account of the two directions. Furthermore, the network congestion within the peaks limits the sample size within the peak hours, these are the most important hours and they are also the hours demonstrated to suffer from the greatest modelled and observed divergence levels. During the AM peak hour as few as 4 journey times commenced within the assessment period.
- The limited peak hour sample size was also adversely effected by the delays experienced within a single section of the route, specifically on the A452 between the Birmingham Road/Wedgenock Road and Ansell Way.

When considering these issues with the observed data the following, additional, comparisons where undertaken:

- A comparison of the modelled and observed journey times with the Wedgenock Lane to Ansell Way section having been removed from the analysis.
- A comparison has been undertaken using specifically defined journey time analysis vehicles within the model. This form of analysis consist of releasing vehicles into the model network at times which precisely match the departure times recorded within the observed surveys.

The outcome of both of these approaches has been presented as follows:

Revised Sectional Analysis

The first approach to reviewing the data involved checking how well the modelled journey times compared to the observed with the section between Wedgenock Lane and Theatre Street removed from the analysis.

In effect this approach split the route into two sections which in turn created four comparisons, one per section/direction. Section 1 was defined between Charingworth Drive and Wedgenock Lane whilst Section 2 was defined from Ansell Way to Myton Road. The outcome of these comparisons has been presented within the following Table 25 and Table 26 for the AM and PM respectively:

Table 25- AM Revised Route Journey Time Validation

	$\mathbf{0 7 : 0 0}$ to 08:00			$\mathbf{0 8 : 0 0}$ to 09:00			$\mathbf{0 9 : 0 0}$ to 10:00		
Route	OBS	MOD	Status	OBS	MOD	Status	OBS	MOD	Status
Route 2 EB 1	$02: 59$	$02: 45$	PASS	$05: 14$	$05: 09$	PASS	$03: 12$	$02: 31$	PASS
Route 2 WB 1	$03: 03$	$02: 20$	PASS	$03: 11$	$02: 25$	PASS	$02: 55$	$02: 21$	PASS
Route 2 EB 2	$03: 55$	$03: 24$	PASS	$08: 30$	$08: 23$	PASS	$03: 56$	$04: 53$	PASS
Route 2 WB 2	$03: 59$	$03: 14$	PASS	$04: 46$	$03: 50$	PASS	$04: 05$	$03: 19$	PASS

Table 26- PM Revised Route Journey Time Validation

	16:00 to 17:00			17:00 to 18:00			18:00 to 19:00		
Route	OBS	MOD	Status	OBS	MOD	Status	OBS	MOD	Status
Route 2 EB 1	$02: 52$	$02: 28$	PASS	$03: 15$	$02: 34$	PASS	$02: 52$	$02: 28$	PASS
Route 2 WB 1	$03: 17$	$02: 32$	PASS	$03: 38$	$02: 38$	PASS	$03: 00$	$02: 27$	PASS
Route 2 EB 2	$05: 46$	$05: 16$	PASS	$07: 13$	$06: 40$	PASS	$04: 08$	$04: 48$	PASS
Route 2 WB 2	$05: 58$	$05: 26$	PASS	$06: 28$	$05: 33$	PASS	$04: 05$	$03: 39$	PASS

The previous tables demonstrate that when the section is removed from the analysis, the remaining elements of the route conform to the required standards.

This indicates that this section of the route has a disproportionate impact on the overall comparisons. This is because at certain periods the route is heavily congested an subject to large levels of delay whilst for the remainder of the period vehicles are able to move more freely across the route. When the average journey time of all vehicles travelling this section of the route is considered within the model this is inevitably going to result in faster journey times than has been recorded since 25 to 50% of the recorded observations where collected during periods of high congestion.

As a result of this, it was also considered appropriate to undertake a direct check of modelled versus observed journey times based on the departure time of the route surveys. To undertake these comparisons vehicles were assigned to fixed routes within the model. These routes were defined to precisely match the surveyed routes and the vehicles were released into the model network at exactly the same time as the surveys commencement. This provided an exact replication of the survey parameters within the model network.

The results of this comparison are presented within the following Table 27:
Table 27- Vehicle Route Journey Time Validation

Period	OBS	MOD	Diff	Status
$07: 00$ to $08: 00$	$07: 19$	$08: 06$	$00: 47$	PASS
	$06: 19$	$07: 03$	$00: 43$	PASS
$08: 00$ to $09: 00$	$16: 31$	$18: 22$	$01: 51$	PASS
	$07: 21$	$07: 57$	$00: 36$	PASS
$09: 00$ to $10: 00$	$08: 46$	$08: 39$	$00: 06$	PASS
	$06: 41$	$07: 00$	$00: 19$	PASS
16:00 to $17: 00$	$08: 10$	$08: 38$	$00: 28$	PASS
	$08: 50$	$09: 16$	$00: 26$	PASS
$17: 00$ to $18: 00$	$09: 50$	$09: 05$	$00: 45$	PASS
	$09: 03$	$10: 06$	$01: 02$	PASS
$18: 00$ to $19: 00$	$07: 43$	$09: 14$	$01: 31$	FAIL
	$07: 01$	$07: 05$	$00: 04$	PASS

Analysis of the previous table reveals that the modelled journey times conform to the standards outlined in DMRB in all but one case. Of greatest significance are the results obtained from the AM and PM peak hours which demonstrate, when the survey parameters are reflected precisely within the modelling, a sufficient level of overall model validation.

7.4 Validation Summary

On an hour by hour basis the previous sectional analysis indicates that the journey times within all model hours are comparable to observed in almost all occasions.

When considering the analysis of the entire routes delay within one section, coupled with a limited sample size, was observed to adversely bias the comparisons.

Removal of this section from the analysis revealed that the remaining sections of the route were observed to conform to the required DMRB standard.

Furthermore, vehicle routes were defined within the model area which precisely matched the survey routes. Vehicles were then released into the model at matching times to the first timing point of the surveys. When comparing the modelled and observed journey times in this manner, both directions of the route, within the AM and PM peak hours, are demonstrated to conform to the standards outlined with DRMB.

Based on the outcome of both the link and journey time comparisons it is reasonable to conclude that the model demonstrates an appropriate level of validation.

8 Model Forecasting

8.1 Introduction

WCC requested that a model be produced that can be used to test the implication of schemes and developments under future year 2016 and 2021 conditions.

8.2 Objectives

The objective of this exercise is to produce future year Warwick Town PARAMICS models, in line with current guidelines, which can be deemed fit for purpose as a means of assessing the impact of any localised growth strategy and associated mitigation packages.

It is intended that the final models will serve as a sound basis upon which the impacts of local development proposals and transport interventions can be assessed.

8.3 Scope

The process by which these models have been produced is based on the methodology outlined in the 'Warwickshire County Council draft modelling protocol'.

Traditionally the forecasting process would require the allocation of committed developments within the study area and then demands would be adjusted, through interrogation of the TEMPRO database, to ensure that the necessary levels of growth are assigned within the model.

At this stage, however, there are no major committed developments anticipated within the study area. Furthermore, the Local Plan sites are currently out for consultation. Given the relative uncertainty associated with the Local Plan it was decided, in the short term, that the demands would be forecast through direct interpretation of the TEMPRO database.
It is envisaged that once the Local Plan sites have been allocated O-D information for both Local Plan demands and Committed Developments should be cordoned out of the WLWA model and re-assigned within the town centre model to ensure the forecasting process is both robust and reflective of known assumptions.

8.4 Background Forecasts

The forecasting was informed through the following steps:

- Light vehicle growth associated with O-Ds within the model not directly between external zones was derived directly from the TEMPRO database.
- TEMPRO factors were adjusted by NTMAF09 to provide the forecast growth levels for external trips.
- The 2011 to 2022 NTEM 'all roads’ West Midlands were used to inform the growth of HGV trips on the model network.

8.5 Matrix Levels

Traditionally the forecast growth levels have been stored within a separate matrix level. However, because this forecast model represents and interim model which will be updated once the certainty around the Local Plan allocations has increased, it was decided that growth would be applied directly to the existing matrix levels.

8.6 TEMPRO/NTEM Factors

The NTEM table used to derive the factors for HGV growth is provided within Appendix D of this report. In line with current guidance, the TEMPRO dataset applied was 6.2 , these factors were not adjusted by income and fuel as it is intended that adjusted factors will serve as the cap on growth within the model and a cap is not likely to be required until forecast growth associated with the Local Plan allocations is included within the model.

Thus, to ensure that any forecasting is not overly robust, TEMPRO factors to inform internal growth within the model have not been adjusted at this stage.

A summary of the 2013 to 2016 and 2021 factors used to inform the forecasting is provided within the following tables:
Table 28-2013 to 2016 Growth Factors

Level	Name	AM	PM		
		Origin	Destination	Origin	Destination
County	Warwickshire	1.0169	1.0283	1.0275	1.0204
44UF0	rural (Warwick)	1.0223	1.0274	1.0269	1.0235
44UF3	Warwick	1.0232	1.0271	1.0267	1.0239
NTEM	All Roads Factor	1.024			

Application of these factors results in demand being predicted for the 2022 test year based on TEMPRO/NTEM growth predictions. NTEM factors govern the growth of HGV trips whilst TEMPRO informs the growth of cars and LGV trips.

8.7 2013 Demand Levels

The total volume of demand assigned to the model across each matrix level, for each individual model hour, is summarised in the following table:

Table 29 - Assigned Demand Totals

Level	$\mathbf{0 7}$ to $\mathbf{0 8}$	$\mathbf{0 8}$ to $\mathbf{0 9}$	$\mathbf{0 9}$ to $\mathbf{1 0}$	$\mathbf{1 6}$ to $\mathbf{1 7}$	$\mathbf{1 7}$ to $\mathbf{1 8}$	$\mathbf{1 8}$ to $\mathbf{1 9}$
M1	12229	18515	12499	15526	17587	13111
M2	145	219	254	131	122	100
Total	$\mathbf{1 2 3 7 4}$	$\mathbf{1 8 7 3 4}$	$\mathbf{1 2 7 5 3}$	$\mathbf{1 5 6 5 7}$	$\mathbf{1 7 7 0 9}$	$\mathbf{1 3 2 1 0}$

8.8 2016 Demand Levels

The total volume of demand assigned to the model across each matrix level, for each individual model hour, is summarised in the following table:

Level	$\mathbf{0 7}$ to $\mathbf{0 8}$	$\mathbf{0 8}$ to $\mathbf{0 9}$	$\mathbf{0 9}$ to $\mathbf{1 0}$	$\mathbf{1 6}$ to $\mathbf{1 7}$	$\mathbf{1 7}$ to $\mathbf{1 8}$	$\mathbf{1 8}$ to $\mathbf{1 9}$
M1	12457	18869	12738	15846	17949	13377
M2	149	224	260	134	125	102
Total	$\mathbf{1 2 6 0 6}$	$\mathbf{1 9 0 9 3}$	$\mathbf{1 2 9 9 8}$	$\mathbf{1 5 9 8 0}$	$\mathbf{1 8 0 7 4}$	$\mathbf{1 3 4 7 9}$
Growth from 2013	1.87%	1.92%	1.92%	2.07%	2.06%	2.03%

8.9 2021 Demands Levels

The total volume of demand assigned to the model across each matrix level, for each individual model hour, is summarised in the following table:

Level	$\mathbf{0 7}$ to $\mathbf{0 8}$	$\mathbf{0 8}$ to $\mathbf{0 9}$	$\mathbf{0 9}$ to $\mathbf{1 0}$	$\mathbf{1 6}$ to $\mathbf{1 7}$	$\mathbf{1 7}$ to $\mathbf{1 8}$	$\mathbf{1 8}$ to $\mathbf{1 9}$
M1	12683	19213	12970	16167	18311	13642
M2	159	241	279	144	134	110
Total	$\mathbf{1 2 8 4 2}$	$\mathbf{1 9 4 5 4}$	$\mathbf{1 3 2 4 8}$	$\mathbf{1 6 3 1 1}$	$\mathbf{1 8 4 4 5}$	$\mathbf{1 3 7 5 2}$
Growth from 2013	3.78%	3.84%	3.89%	4.17%	4.16%	4.10%

9 Summary and Conclusions

9.1 Summary

Arup were commissioned by Warwickshire County Council to build a PARAMICS model of Warwick town centre.

There are a number of reasons behind the development of this area specific model including:

- To enable detailed testing of scheme proposals within the area of the A46/A4177 junction to be undertaken.
- To enable options for proposals pertaining to the simplification of traffic movements across the town centre to be undertaken through a separate, subsequent, study.
- To enable detailed testing of the implications of the Local Plan allocations to be undertaken within a more refined and detailed study model.
It is also intended that the model will also be made available for development control testing should it be required.

The model has been developed to be inclusive of both AM (07:00 to 10:00) and PM (16:00 to 19:00) time periods. In line with WCC requirements these have been modelled using discrete hourly periods within the PARAMICS model. This has resulted in the following periodic configuration:

- Period 1: 07:00 to 08:00
- Period 2: 08:00 to 09:00
- Period 3: 09:00 to 10:00
- Period 4: spare
- Period 5: 16:00 to 17:00
- Period 6: 17:00 to 18:00
- Period 7: 18:00 to 19:00

The model has been calibrated in line with current traffic modelling guidelines and GEH comparisons have been undertaken using all available observed data. A summary of the outcome of these comparisons is provided within the following table:

Table 30 - Model Calibration Summary

	$07: 00$ to $08: 00$	$08: 00$ to $09: 00$	$09: 00$ to $\mathbf{1 0}: 00$	$16: 00$ to $\mathbf{1 7 : 0 0}$	$17: 00$ to $\mathbf{1 8 : 0 0}$	$\mathbf{1 8 : 0 0}$ to $\mathbf{1 9 : 0 0}$
Counts:	273	275	278	275	276	276
GEH ≤ 5	244	239	256	258	252	251
$\%$	$\mathbf{8 9 . 3 8 \%}$	$\mathbf{8 6 . 9 1 \%}$	$\mathbf{9 2 . 0 9 \%}$	$\mathbf{9 3 . 8 2 \%}$	$\mathbf{9 1 . 3 0 \%}$	$\mathbf{9 0 . 9 4 \%}$

A summary of the overall level of model validation achieved has been summarised as follows:

- Link count validation comparisons indicate that over 85% of locations achieve the required standard across both AM and PM peak hours.
- Sector analysis of the journey time data reveals that when modelled and observed journey times are compared by sector almost all of the modelled journey times are within the necessary range.
- Analysis of the entire route using journey paths was revealed to be inappropriate due to a limited sample size along one particular section which incurred a high level of delay as a result the following steps where undertaken:
- A comparison of the modelled and observed journey times with the Wedgeknock Lane to Ansell Way section having been removed from the analysis.
- A comparison has been undertaken using specifically defined journey time analysis vehicles within the model. This form of analysis consist of releasing vehicles into the model network at times which precisely match the departure times recorded within the observed surveys.
- The supplementary journey time analysis demonstrated that, when the section is removed from the analysis, the remaining elements of the route conform to the required standards.
- Similary the journey times produced from vehicles assigned to fixed routes within the model defined to precisely match the surveyed routes and released into the model network at exactly the same time as the surveys commencement. This demonstrated that, when the survey parameters are reflected precisely within the modelling, a sufficient level of overall model validation has been achieved.

9.2 Conclusion

The model has been calibrated and validated for the entire AM (6:00 to 10:00) and PM (16:00 to 19:00) time period.

A high degree of calibration has been achieved for all hours and, in particular, the ability to demonstrate that the AM and PM peak hour calibration levels exceed those required by DMRB, provides the necessary evidence to conclude that this model provides a realistic and accurate representation of traffic operations within the study area.

The model has been forecast in line with the methodology outlined within WCC's Modelling Protocol for development and through interrogation of the TEMPRO database to provide a reasonable and robust basis upon which the assessment of future year interventions can be undertaken.

Appendix A
Link Flow Calibration Tables

		 "
		\square

Appendix B
Link Flow Validation Table

Link Flow Validation			07:00:00			08:00:00			09:00:00			16:00:00			17:00:00			18:00:00		
Count Ref	Date	Mvt	OBS	MOD	GEH															
A425 Myton Road	05-Aug	EB	327	287	2.3	730	615	4.4	395	415	1.0	547	485	2.7	445	480	1.6	439	461	1.0
A425 Myton Road	05-Aug	wb	324	311	0.8	584	487	4.2	323	326	0.1	484	477	0.3	573	571	0.1	518	440	3.6
A425 Saltisford	05-Aug	NB	349	432	4.2	483	602	5.1	388	473	4.1	733	647	3.3	689	620	2.7	499	609	4.7
A425 Saltisford	05-Aug	SB	543	570	1.1	641	604	1.5	528	695	6.8	511	555	1.9	568	588	0.8	513	630	4.9
A429 Coventry Road	05-Aug	NB	462	422	1.9	471	512	1.9	363	452	4.4	625	584	1.7	555	617	2.6	467	560	4.1
A429 Coventry Road	05-Aug	SB	564	605	1.7	415	483	3.2	419	470	2.4	407	470	3.0	450	486	1.7	404	452	2.3
A445 Emscote Road	05-Aug	NB	225	278	3.3	368	373	0.2	441	493	2.4	490	467	1.1	586	550	1.5	490	536	2.0
A445 Emscote Road	05-Aug	SB	378	367	0.6	419	459	1.9	429	460	1.5	477	458	0.9	480	470	0.4	484	468	0.7
A4189 Friars Street	05-Aug	Eb	338	247	5.3	472	396	3.6	305	242	3.8	225	212	0.9	257	227	1.9	239	227	0.8
A4189 Friars Street	05-Aug	WB	108	94	1.4	206	193	0.9	185	170	1.1	367	247	6.8	440	345	4.8	350	308	2.3
Banbury Road N of Gallows Hill	05-Aug	SB	857	684	6.2	1044	1,092	1.5	510	614	4.4	798	761	1.3	702	758	2.1	478	523	2.0
Banbury Road N of Gallows Hill	05-Aug	NB	557	550	0.3	959	1,029	2.2	444	472	1.3	750	728	0.8	801	781	0.7	609	587	0.9
D4100 Cape Road	05-Aug	NB	126	149	2.0	222	262	2.6	195	172	1.7	348	291	3.2	362	331	1.6	171	192	1.6
D4100 Cape Road	05-Aug	SB	244	140	7.5	489	371	5.7	331	251	4.7	309	242	4.1	354	306	2.6	199	246	3.1
				14			14			14			14			14			14	
				11			12			13			13			14			14	
				78.57\%			85.71\%			92.86\%			92.86\%			00.00\%			00.00\%	
			9	64.3\%		8	57.1\%		8	57.1\%		10	71.4\%		13	92.9\%		9	64.3\%	
			10	71.4\%		10	71.4\%		9	64.3\%		13	92.9\%		13	92.9\%		12	85.7\%	
			11	78.6\%		12	85.7\%		13	92.9\%		13	92.9\%		14	100.0\%		14	100.0\%	
			12	85.7\%		14	100.0\%		13	92.9\%		13	92.9\%		14	100.0\%		14	100.0\%	
			13	92.9\%		14	100.0\%		14	100.0\%		14	100.0\%		14	100.0\%		14	100.0\%	
			14	100.0\%		14	100.0\%		14	100.0\%		14	100.0\%		14	100.0\%		14	100.0\%	
			14	100.0\%		14	100.0\%		14	100.0\%		14	100.0\%		14	100.0\%		14	100.0\%	
			14	100.0\%		14	100.0\%		14	100.0\%		14	100.0\%		14	100.0\%		14	100.0\%	

Appendix C

Journey Time Validation Tables

SECTIONAL ANALYSIS

SECTIONAL ANALYIIS

SECTIONAL ANALYIIS

Appendix D

NTEM Factors

$\left\lvert\, \begin{aligned} & \frac{\pi}{4} \\ & \frac{3}{x} \\ & \hline \end{aligned}\right.$	
\|r	
\|r	
5	

Appendix E

Warwick Bluetooth Survey Data Analysis

Warwickshire County Council Warwick Bluetooth Survey
 Data Analysis Report

211439-19.R012
Draft 1 | 3 April 2013

This report takes into account the particular
instructions and requirements of our client.
It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party.

Job number 211439-19

Ove Arup \& Partners Ltd

The Arup Campus
Blythe Gate
Blythe Valley Park
Solihull B90 8AE
United Kingdom
www.arup.com

Contents

Page

1 Introduction 1
1.1 Report Structure 1

2 Requirements of Survey 1
3 Survey Methodology 2
3.1 Area of Survey 2
3.2 Recording Methodology 3
3.3 Survey Dates \& Times 3
3.4 Raw Survey Data 3

4 Survey Analysis 4
4.1 Identifying Unique Vehicle Trips 4
4.2 Processing \& Categorising the Data 5
4.3 Identifying Trip Movements 5
4.4 Dealing with Errors 7
4.5 Factoring Up the Data 8

5 Results \& Findings 8
5.1 Robustness of Results 8
5.2 Results 8

6 Summary \& Conclusions 11
6.1 Summary 11
6.2 Conclusion 12

Appendices

Appendix A

Warwick Registration Survey 2006

Appendix B

Cordon Matrices

Appendix C

Trip Movements

Arup have been commissioned by Warwickshire County Council (WCC) to assess the outputs of a recent town-wide origin and destination survey undertaken through the collection of Bluetooth signals across the network.

This report details the methodology and results of the survey which was undertaken between the 7th of July 2012 and 13th July 2012 around Warwick town, including analysis of the outputs. The survey was carried out across two concentric cordons, with one inner town and one outer town cordon boundary having been defined.

The purpose of two cordons was to ascertain the types of trip pattern undertaken across the entire area and allow through trips (trips travelling through the entire network) to be captured and enumerated at the same time. The Bluetooth survey was carried out by Sky High Traffic on behalf of WCC.

This report offers an overall conclusion on the robustness of the data and the impact of traffic on Warwick.

1.1 Report Structure

The remainder of this report is set out as follows:

- Section 2 - Outlines the study objectives
- Section 3 - Summarises the Survey Methodology
- Section 4 - Analysis of Results
- Section 5 - Results \& Findings
- Section 6 - Summary \& Conclusions

2 Study Objectives

The objectives of this study are outlined as follows:

- To identify the number of vehicles travelling to, from and through Warwick town.
- To identify how many of these vehicles are associated with local through traffic or long distance through traffic.
- To find totals for all movement identified in Table 1.
- To determine the sample rate at each cordon site by period.
- To make an assessment of all of the above for the following time periods;
- 07:00-10:00
- 10:00-15:00
- 15:00-16:00
- 16:00-19:00.
- To produce an initial periodic matrix of movements that can later be factored to produce a Prior Matrix for the purpose of O-D Matrix Estimation of the study area.

3 Survey Methodology

3.1 Area of Survey

In order to identify the vehicular movements within and through Warwick town, the location of two cordons, used for a previous study undertaken by Warwickshire County Council which can be found in Appendix A, were chosen for the purposes of this assessment. The benefit of using the existing cordon locations is that it allows comparisons to be made against the old information when examining the newly collected data.

The following Figure 1 shows the cordon location points. The Outer cordon encompasses the wider area of Warwick and is made up of sites, $2,3,4,5,6,7 \&$ 9. The Inner cordon encompasses Warwick town centre and is made up of the sites, $1,8,10,11,12,13 \& 14$.

Figure 1 Cordon Location Plot

The cordon points cover all of the major routes into and out of Warwick. Importantly, there are no gaps in the cordon as this could result in some vehicle route patterns being incorrectly categorised.

3.2 Data Capture Methodology

In order track vehicle movements through the cordons, it was identified that Bluetooth Vehicle Tracking could provide an efficient solution. The main advantages of capturing traffic data via Bluetooth is that data can be collected over a 24 hour period for a large number of days. Other advantages include, poor weather conditions will not affect the quality of the data and covert recording maintains driver normality.

Fourteen Bluetooth scanning units were placed at the cordon point locations illustrated in the previous Figure 1. These scanning units were positioned at the roadside, for example on street lighting columns. Once the units were active they scanned for any active Bluetooth devices with a set range of the unit and logged the unique Bluetooth device identification code with a date and time.

3.3 Survey Dates \& Times

To capture a typical week with average traffic flows and traffic behaviour, the survey commenced at 00:00 on the 7th of July 2012 and ran until 00:00 14th July 2012. These dates covered a weekend and full working week. The survey was undertaken in July, which is a neutral month, to provide the best representation of normal traffic conditions around Warwick.

3.4 Raw Survey Data

A review was carried out of the raw Bluetooth cordon data after the survey was completed. The review was undertaken in order establish that the data was recorded correctly and individual trips were identified clearly. The figure below shows a sample of the raw data recorded by the scanning units.

Figure 2 Sample of Raw Bluetooth data

SiteId	"MAC000149201"
SiteName	"149201"
SiteDescription	"Coten End"
SiteLatitude	52.28492
SiteLongitude	-1.5769
Data Start	$2012-07-07$ 00:00:00
Data End	2012-07-08 00:00:00
RecTime	VehicleId
$07 / 07 / 2012$ 00:00	470DFB00E80E
$07 / 07 / 201200: 00$	BE71FC439398
$07 / 07 / 201200: 01$	65234100CCF2
$07 / 07 / 201200: 02$	288AF44D8900
$07 / 07 / 201200: 03$	A5EC798E5D68
$07 / 07 / 201200: 04$	F310BD0066C4
$07 / 07 / 201200: 06$	AE075A00D9F8

The review identified issues with the following sites;

- Site 11 - failed to record any data until it commenced recording at 16:14 on the $9^{\text {th }}$ of July.
- Site 7 - on the $13^{\text {th }}$ of July stopped recording as a result of an inquisitive street lighting engineer removed the scanning unit. [WCC to confirm]

The review also identified a limitation of the Bluetooth data in so far as that, in order to establish trip direction, two cordon points must be passed by a vehicle containing a unique Bluetooth device ID.

Unfortunately, no information as to the direction in which the vehicle is travelling is recorded. The lack of information regarding the direction of travel makes identifying any movement which only crosses one cordon point impossible. The movements affected are listed below;

- Local town centre trips stopping in the Warwick wider area;
- Warwick wider area trips stopping in Warwick town centre;
- Warwick wider area trips leaving Warwick;
- Trips entering the Warwick wider area.

4 Survey Analysis

4.1 Identifying Unique Vehicle Trips

Each Bluetooth scanning unit records vehicles in time stamp order, which as a result produces a list of multiple Record Times and Vehicle ID's shown in the previous Figure 2. The following tasks were carried out to convert these data lists into unique vehicle trip so it can be classified against a trip type during the later stages of the analysis.

The first stage was to identify a unique vehicle trip the raw survey data for each of the 14 cordon points was separated into the following time periods;

- 07:00-10:00
- 10:00-15:00
- 15:00-16:00
- 16:00-19:00

In order that it could be guaranteed that a trip which spent the majority of its time travelling within the respective period, but started or ended outside of that period, where included within the analysis, an hour either side of the time period was included at this stage. The purpose of this stage is to ensure that a trip which starts or ends outside the assessment time period but spends the majority of transit time within the assessment period, is not discounted. For example, if only trips captured as commencing between 07:00 to 10:00 were assessed then a trip which started at 06:45 to 08:30 would not be included despite the majority of transit time occurring within the 07:00 to 08:00 hour.

Each site was then combined and ordered chronologically. A list of unique vehicles was established using the vehicle ID assigned by the Bluetooth survey data. This enabled the entire journey for each unique vehicle within the period to be plotted. A maximum of 20 cordon points passed were plotted since this was
considered acceptable as any trip passing more than 20 sites would be considered illogical. There could be instances where it would be reasonable to assume that more than 20 cordon points would be passed within a time period, for example a Bus serving the Warwick \& the wider area. However it was accepted that buses would represent a small percentage of overall trips captured and thus, not significant to the overall analysis.

4.2 Processing \& Categorising the Data

Each vehicle trip was subject to a set of conditions to remove any illogical data and to ensure that the most likely vehicle movement was identified and assigned to a viable trip movement classification. These conditions were as follows;

- Any unique trip containing a time interval of greater than 25 minutes between crossing two cordon points would be identified as the start of a new trip. This provides a reasonable amount of time for a through trip to travel through the cordons within the busiest period and not be incorrectly classified as a new trip.
- Any unique trip recorded at the same site location within a 15 second period would have the double counted record removed. This would ensure that a logical trip pattern would be assigned at a later stage of the analysis. 15 seconds was considered an appropriate amount of time on review of the road network.
- Any unique trip, separated out into individual start times was then removed if majority of the trip transit time was spent outside the time period being assessed. This ensures that a trip would not be assigned an incorrect trip pattern by only assessing a trip from the point at which the period starts or ends.

4.3 Identifying Trip Moyements

There are 11 possible movements required to be identified from the analysis of the two cordons shown in Figure 3. The following Figure 3 and Table 1 describe the 11 possible movements and the combination of Entry/Exit and Outer/Inner cordon points that classify each movement.

Figure 3 possible trip movements

Table 1 Table of possible movements

ID	Movement	Entry	Entry	Exit	Exit
		Outer	Inner	Inner	Outer
A	Long distance town centre trips	\checkmark	\checkmark	\checkmark	\checkmark
B	Local town centre through trips		\checkmark	\checkmark	
C	Long distance town centre through trips starting outside the outer cordon and stopping within the Warwick wider area	\checkmark	\checkmark	\checkmark	
D	Long distance town centre through trips starting within the Warwick wider area and stopping outside the outer cordon		\checkmark	\checkmark	\checkmark
E	Local town centre trips stopping in the Warwick wider area.			\checkmark	

F	Warwick wider area trips stopping in Warwick town centre.		\checkmark		
G	Town centre traffic travelling long distance to outside the outer cordon.			\checkmark	\checkmark
H	Long distance trips arriving in Warwick town centre	\checkmark	\checkmark		
I	Warwick wider area trips leaving Warwick				\checkmark
J	Trips entering the Warwick wider area	\checkmark			
K	Warwick wider are through trips	\checkmark			\checkmark

To establish the trip patterns detailed above, a concatenation of the site type for each unique vehicle trip was made. This concatenation was used to match the movement against each unique trip.

4.4 Data Errors

For movements which only require one cordon point to be recorded, E, F, I and J it was not possible to establish the direction of travel across an individual cordon point as this data was not recorded by the Bluetooth survey. To overcome this issue a directional factor was determined for each period using the automatic traffic counters ATC's for each period assessed.

Table 2 Average ATC directional split at Inner \& Outer cordon sites.

	$\mathbf{0 7 0 0 - 1 0 0 0}$		$\mathbf{1 0 0 0 - 1 5 0 0}$		$\mathbf{1 5 0 0 - 1 6 0 0}$	$\mathbf{1 6 0 0 - 1 9 0 0}$		
	Inbound	Outbound	Inbound	Outbound	Inbound	Outbound	Inbound	Outbound
Average Inner Cordon Sites	59%	41%	51%	49%	50%	50%	45%	55%
Average Outer Cordon Sites	45%	55%	49%	51%	52%	48%	53%	47%

As explained above part of identifying the 11 possible movement types the process uses a concatenation of the site type for each unique vehicle. This concatenation was used to match the movement against each unique trip. However not every concatenation provided a logical trip movement for example "Outer Inner Inner Outer Outer" would be considered an illogical movement type and would not be classified. It was clear to see that this trip should be classified as trip type A (Long distance town centre trips), as it includes the correct cordon sites to be passed "Outer Inner Inner Outer". To make sure that these trips were not unfairly excluded from the analysis a list of unmatched concatenations were extracted and matched manually were logical trip patterns occurred.

4.5 Data Factoring

Origin and destination matrices were produced using the trip origin and destination cordon points for each individual trip identified within each time period. To factor up these matrices to the ATC count data collected, the matrices were converted into proportional matrices. An average row and column total was calculated and the sum of all ATC cordon sites inbound and outbound were calculated and applied to the respective average row and column total. This enabled each matrix to be factored to the sum of the inbound and outbound cordon counts. The Factored matrices are included within Appendix B.

$5 \quad$ Results \& Findings

5.1 Robustness of Results

Table 3 percentage of matched movements to ATC count

Survey Day	$\mathbf{0 7 0 0 - 1 0 0 0}$	$\mathbf{1 0 0 0 - 1 5 0 0}$	$\mathbf{1 5 0 0 - 1 6 0 0}$	$\mathbf{1 6 0 0 - 1 9 0 0}$
Saturday	7%	18%	17%	12%
Sunday	5%	15%	12%	10%
Monday	10%	18%	25%	22%
Tuesday	20%	17%	26%	21%
Wednesday	21%	18%	26%	21%
Thursday	18%	18%	21%	18%
Friday	16%	16%	22%	19%

The previous Table shows the sample of total number of matched movements as a percentage of the total ATC counts carried out for each period on Monday the $9^{\text {th }}$ of July 2012 for all inner and outer cordon sites. The Saturday, Sunday \& the Monday 0700-1000 time periods demonstrate a reduced percentage when compared to the remainder of the week which can be explained by site 11 not having been operational during this time.

The results demonstrate that when all the sites were active a sample rate of 17% or more was achieved across all time periods. These results are considered reasonable when relying on vehicles with Bluetooth devices within their vehicles and therefore represent a robust picture for Tuesday \& Wednesday and the majority of Thursday.

5.2 Results

Appendix C provides a full summary for each individual movement for each day across the 4 time periods; all movements are expressed as vehicles. Additionally values are broken down as a portion of all movements across the time period and can be used to identify the predominant movement types

The results below are taken from the weekday (Tuesday) and weekend (Saturday) traffic data. The Tuesday provided a good sample as all sites were fully operational across all time periods and an adjustment was made to account for site 11 not working on the Saturday. The tables provide an insight into the nature of
traffic using the Warwick road network. The table below is a summary of all movement types on Tuesday the $10^{\text {th }}$ July 2012.

Table 4 Traffic Movements Identified Tuesday 10/07/2012

ID	Movement	Period			
	$\mathbf{0 7 0 0 - 1 0 0 0}$	$\mathbf{1 0 0 0 - 1 5 0 0}$	$\mathbf{1 5 0 0 - 1 6 0 0}$	$\mathbf{1 6 0 0 - 1 9 0 0}$	
A	Long distance town centre trips	8%	6%	5%	6%
B	Local town centre through trips	8%	8%	7%	8%
C	Long distance town centre through trips starting outside the outer cordon and stopping within the Warwick wider area	8%	6%	5%	6%
D	Long distance town centre through trips starting within the Warwick wider area and stopping outside the outer cordon	5%	5%	4%	5%
E	Local town centre trips stopping in the Warwick wider area.	5%	8%	9%	8%
F	Warwick wider area trips stopping in Warwick town centre.	7%	9%	9%	6%
G	Town centre traffic travelling long distance to outside the outer cordon.	5%	5%	5%	6%
H	Long distance trips arriving in Warwick town centre	7%	6%	3%	5%
I	Warwick wider area trips leaving Warwick	22%	20%	23%	20%
J	Trips entering the Warwick wider area	18%	18%	25%	23%
K	Warwick wider are through trips	8%	7%	6%	8%

The table above provides some interesting statistics, particularly when examining the volumes of the movements entering the outer cordon $(\mathrm{A}+\mathrm{C}+\mathrm{H}+\mathrm{J}+\mathrm{K})$. The largest trip proportions are those stopping in the wider Warwick area but that never enters the town centre. This particular movement could be attributed to school, hospital and supermarket drop-off and pickup trips. The 15:00-16:00 hour has a higher percentage of trips entering the Warwick wider area which could occur as a result of this being the period in which the majority of School related trips occur during the PM period..

The Long distance trips entering the outer and inner cordon then exiting via the inner and outer cordon (movement type A) make up between $6-8 \%$ of all trips identified across each of the time periods. The most noticeable change occurs within the 1500-1600 period for long distance trips arriving in Warwick town centre. They range between $5 \%-7 \%$ for the other periods however this drops to 3% which could be as a result of the increase in school pickup trips.

Table 5 Traffic passing through the inner cordon Tuesday 10/07/2012

ID	Movement	Period			
		$\mathbf{0 7 0 0 - 1 0 0 0}$	$\mathbf{1 0 0 0 - 1 5 0 0}$	$\mathbf{1 5 0 0 - 1 6 0 0}$	$\mathbf{1 6 0 0 - 1 9 0 0}$
A	Long distance town centre trips	29%	25%	25%	24%
B	Local town centre through trips	26%	31%	34%	33%
C + D	Warwick wider area to Warwick outside or outside to Warwick wider area.	45%	44%	41%	43%

Traffic passing through the inner cordon 'through town centre' trips comprise of 29% of all movements. The relative proportions of these through trips are detailed in the table above. It can be seen that long distance traffic makes up a significant proportion of through town centre trips in all periods however it should be noted that around 75% of through trips are generated locally within the wider Warwick area.

Table 6 Traffic entering the outer cordon Tuesday 10/07/2012

ID	Movement	Period			
	$\mathbf{0 7 0 0 - 1 0 0 0}$	$\mathbf{1 0 0 0 - 1 5 0 0}$	$\mathbf{1 5 0 0 - 1 6 0 0}$	$\mathbf{1 6 0 0 - 1 9 0 0}$	
A	Long distance town centre trips	16%	15%	10%	12%
C	Long distance town centre through trips starting outside the outer cordon and stopping within the Warwick wider area	9%	9%	7%	7%
H	Long distance trips arriving in Warwick town centre	14%	15%	10%	13%
J	Trips entering the Warwick wider area	42%	43%	61%	54%
K	Warwick wider are through trips	18%	18%	12%	14%

The table above shows that the proportions of long distance traffic passing through the town centre are similar to those of traffic stopping in the Warwick wider area having passed through the town centre. The largest proportions are those of traffic stopping in the wider Warwick area, trip type J.

Table 7 Traffic Movements Identified 07/07/2012 (Weekend)

ID	Movement	Period			
	$\mathbf{0 7 0 0 - 1 0 0 0}$	$\mathbf{1 0 0 0 - 1 5 0 0}$	$\mathbf{1 5 0 0 - 1 6 0 0}$	$\mathbf{1 6 0 0 - 1 9 0 0}$	
A	Long distance town centre trips	6%	5%	4%	4%
B	Local town centre through trips	11%	12%	8%	11%
C	Long distance town centre through trips starting outside the outer cordon and stopping within the Warwick wider area	8%	7%	4%	7%
D	Long distance town centre through trips starting within the Warwick wider area and stopping outside the outer cordon	7%	6%	4%	6%
E	Local town centre trips stopping in the Warwick wider area.	7%	11%	13%	12%
F	Warwick wider area trips stopping in Warwick town centre.	10%	12%	13%	9%
G	Town centre traffic travelling long distance to outside the outer cordon.	4%	4%	4%	4%
H	Long distance trips arriving in Warwick town centre	5%	5%	3%	4%
I	Warwick wider area trips leaving Warwick	19%	17%	20%	18%
J	Trips entering the Warwick wider area	15%	15%	22%	19%
K	Warwick wider are through trips	9%	6%	5%	5%

The table above details the trip movements identified on the Saturday $07^{\text {th }}$ July 2012. Again trips entering and leaving the Warwick wider area (I + J) make up a large proportion of the trip movement types. Trip type B Local town centre through trips appear to increase when compared with the weekday trip type and could be attributed to local residents residing within the outer cordon travelling through Warwick as for recreational trips instead of trips to their workplace or school.

6 Summary \& Conclusions

6.1 Summary

A comprehensive Bluetooth survey recording all vehicles using Bluetooth devices was successfully undertaken over a 7 day period between 7th of July 2012 and 13th July 2012 around Warwick and the Town centre. Some minor problems occurred with data collection at 1 of the 14 cordon sites however this only
affected 2 days of the survey. The data was successfully used to identify the different trip movements that occurred between the 2 cordons. The data was also used to produce origin and destination matrices for each of the time periods specified in the requirements of the survey.

6.2 Conclusion

The results section has clearly identified that the majority of trip movements occurring between the 2 cordons are Warwick wider area trips leaving Warwick and Trips entering the Warwick wider area. These movements only require trips to be picked up crossing one cordon point while the total number of both these movements can be considered robust, the directional split should be treated with caution. The split was calculated form the average inbound and outbound ATC counts carried out on the first day of the survey. Interestingly the percentage between the reaming movement types did not change greatly between periods and indicates that the trip movement's types were stable throughout the day. The Monday results between 07:00 and 10:00 don't appear to conform with the majority of data collected over the course of the week with very low A, B, C, D \& K trips being recorded. These results could be explained by site 11 coming back into operation on this day. The results show that of the 29% through town centre trips, around 75% are generated locally within the Warwick Wider area and any scheme to reduce and/or manage traffic in the town centre should recognise this.

Appendix B
Cordon Matrices

070072021 (Sasurasa)

12/0720121 (Thusdase)

$13 / 072012$ (fitiay

Appendix C

Trip Movements

08/07/2012		0700-1000		1000-1500		1500-1600		1600-1900	
		Total	Period	Total	Period	Total	Period	Total	Period
OuterlnnerInerouter	A	60	4\%	392	7\%	75	7\%	263	9\%
Innerinner	B	78	5\%	407	7\%	91	9\%	206	7\%
Outerinnerinner	c	37	2\%	205	4\%	44	4\%	120	4\%
Innerinnerouter	D	49	3\%	279	5\%	61	6\%	151	5\%
Inner (Outbound)	E	148	9\%	452	8\%	87	9\%	322	11\%
Inner (Inbound)	F	217	13\%	479	9\%	86	8\%	262	9\%
Innerouter	6	78	5\%	378	7\%	94	9\%	200	7\%
Outerinner	H	65	4\%	331	6\%	58	6\%	148	5\%
Outer (Outbound)	1	447	27\%	1096	20\%	162	16\%	491	17\%
Outer (Inbound)	J	368	23\%	974	18\%	174	17\%	544	19\%
Outerouter	к	81	5\%	442	8\%	86	8\%	165	6\%

0700-1000 ${ }^{\text {c/ }}$									
09/07/2012		Total	Period	Total	Period	Total	Period	Total	Period
Outerlnerlinerouter	A	91	2\%	441	7\%	148	6\%	371	6\%
Innerinner	B	67	2\%	420	6\%	144	6\%	773	12\%
Outerinnerliner	c	64	2\%	338	5\%	84	3\%	361	6\%
Innerinerouter	D	41	1\%	257	4\%	78	3\%	328	5\%
Inner (Outbound)	E	318	9\%	543	8\%	234	9\%	593	9\%
Inner (Inbound)	F	464	13\%	577	9\%	233	9\%	483	7\%
Innerouter	${ }^{6}$	75	2\%	397	6\%	117	5\%	366	6\%
Outerinner	H	89	2\%	485	7\%	108	4\%	270	4\%
Outer (Outbound)	1	1309	35\%	1336	21\%	580	23\%	1208	18\%
Outer (Inbound)	J	1078	29\%	1188	18\%	623	25\%	1338	20\%
Outerouter	к	97	3\%	498	8\%	161	6\%	460	7\%
		3693		6480		2510		6551	

10/07/2012		Total	Period	Total	Period	Total	Period	Total	Period
OuterInerinnerouter	A	422	8\%	388	6\%	136	5\%	371	6\%
Innerinner	B	388	8\%	486	8\%	184	7\%	497	8\%
Outerinnerlmer	c	410	8\%	375	6\%	120	5\%	376	6\%
innerinerouter	D	260	5\%	321	5\%	104	4\%	282	5\%
Inner (Outbound)	E	245	5\%	487	8\%	217	9\%	477	8\%
Iner (Inbound)	F	357	7\%	518	9\%	216	9%	388	6\%
Innerouter	${ }^{6}$	252	5\%	314	5\%	114	5\%	348	6\%
Outerlner	H	363	7\%	364	6\%	80	3\%	279	5\%
Outer (Outbound)	1	1111	22\%	1221	20\%	579	23\%	1255	20\%
Outer (Inbound)	J	914	18\%	1086	18\%	621	25\%	1389	23\%
Outerouter	K	384	8\%	437	7\%	160	6\%	501	8\%
		5106		5997		2531		6163	

12		0700-1000		1000-1500		1500-1600		1600-1900	
		Total	Period	Total	Period	Total	Period	Total	Period
Outerinnerinnerouter	A	436	8\%	414	7\%	131	5\%	396	7\%
Innerinner	в	404	8\%	546	9\%	214	8\%	433	7\%
Outerinerinner	c	444	9\%	399	6\%	129	5\%	362	6\%
Innerinnerouter	D	266	5\%	330	5\%	105	4\%	341	6\%
Inner (Outbound)	E	233	4\%	496	8\%	201	8\%	479	8\%
Inner (Inbound)	F	339	7\%	527	8\%	201	8\%	390	7\%
Innerouter	6	240	5\%	348	6\%	104	4\%	326	5\%
Outerliner	H	343	7\%	388	6\%	89	4\%	273	5\%
Outer (Outbound)	1	1113	21\%	1263	20\%	572	23\%	1197	20\%
Outer (Inbound)	J	916	18\%	1123	18\%	614	24\%	1325	22\%
Outerouter	к	470	9\%	433	7\%	160	6\%	460	8\%

ursday									1600-1900
12/07/2012		Total	Period	Total	Period	Total	Period	Total	Period
Outerinnerinnerouter	A	280	6\%	316	5\%	85	4\%	204	4\%
Innerinner	B	530	11\%	768	12\%	177	8\%	606	11\%
Outerinnerliner	c	355	8\%	452	7\%	83	4\%	389	7\%
Innerinerouter	D	323	7\%	352	6\%	88	4\%	295	6\%
Inner ((utbound)	E	310	7\%	683	11\%	289	13\%	616	12\%
Inner (Inbound)	F	452	10\%	726	12\%	288	13\%	502	9\%
innerouter	6	172	4\%	262	4\%	77	4\%	217	4\%
Outerinner	H	256	5\%	332	5\%	56	3\%	216	4\%
Outer (Outbound)		867	19\%	1065	17\%	438	20\%	932	18\%
Outer (Inbound)	J	714	15\%	947	15\%	469	22\%	1032	19\%
Outerouter	к	399	9\%	396	6\%	116	5\%	284	5\%
		4658		6299		2166		5293	

13/07/2012									
		Total	Period	Total	Period	Total	Period	Total	Period
OuterlnnerInerouter	A	233	6\%	181	3\%	52	2\%	107	2\%
Innerinner	в	460	11\%	713	12\%	217	9\%	892	15\%
Outerinnerinner	c	285	7\%	304	5\%	81	4\%	377	6\%
InnerInerouter	D	258	6\%	334	5\%	105	5\%	188	3\%
Inner (Outbound)	E	322	8\%	734	12\%	310	14\%	713	12\%
Inner (Inbound)	F	470	11\%	779	13\%	310	13\%	582	10\%
Innerouter	6	158	4\%	283	5\%	57	2\%	181	3\%
Outerinner	H	278	7\%	308	5\%	65	3\%	208	3\%
Outer (Outbound)	1	772	19\%	1107	18\%	472	21\%	1054	18\%
Outer (Inbound)	J	635	15\%	984	16\%	506	22\%	1166	19\%
Outerouter	к	261	6\%	411	7\%	119	5\%	524	9\%

id	Movement	Period			
		0700-1000	1000.1500	${ }^{500-1600}$	(00-1900
A	Long distance town centre trips	8%	6%	5%	
B	Local town centre through trips	${ }^{8 \%}$	8%	7%	8\%
C	Long distance town centre through trips starting outside the outer cordon and stopping within the Warwick wider area	$8{ }^{8 \%}$	6%	5%	6%
D	Long distance town centre through trips starting within the Warwick wider area and stopping outside the outer cordon	5%	5%	4%	5%
E	Local town centre trips stopping in the Warwick wider area.	5\%	8\%	9\%	8\%
F	Warwick wider area trips stopping in Warwick town centre.	7%	9\%	9%	6%
G	Town centre traffic travelling long distance to outside the outer cordon.	5\%	5%	5%	6%
H	Long distance trips arriving in Warwick town centre	7%	6%	3%	5%
I	Warwick wider area trips leaving Warwick	22%	20\%	23\%	20\%
J	Trips entering the Warwick wider area	18\%	18\%	25\%	23\%
K	Warwick wider are through trips	8%	7%	6%	

id	Movement	Period			
		0700-1000	1000-1500	${ }_{1500-1600}$	600-1900
A	Long distance town centre trips	8%	7%	5%	7%
B	Local town centre through trips	8%	9\%	8\%	7%
C	Long distance town centre through trips starting outside the outer cordon and stopping within the Warwick wider area	9\%	6%	5%	6%
D	Long distance town centre through trips starting within the Warwick wider area and stopping outside the outer cordon	5%	5%	4%	6%
E	Local town centre trips stopping in the Warwick wider area.	4%	8\%	8\%	8%
F	Warwick wider area trips stopping in Warwick town centre.	7%	8\%	8%	7%
G	Town centre traffic travelling long distance to outside the outer cordon.	5%	6%	4%	5%
H	Long distance trips arriving in Warwick town centre	7%	6%	4%	5%
1	Warwick wider area trips leaving Warwick	21\%	20\%	23\%	20\%
J	Trips entering the Warwick wider area	18\%	18\%	24%	22%
K	Warwick wider are through trips	9\%	7\%	6%	8%

ID	Movement	Period			
		0700-1000	${ }^{1000-1500}$	${ }^{1500-1600}$	600-1900
A	Long distance town centre trips	6\%	5%	4%	4%
B	Local town centre through trips	11\%	12\%	8\%	11\%
C	Long distance town centre through trips starting outside the outer cordon and stopping within the Warwick wider area	$8{ }^{8}$	7\%	4%	7%
D	Long distance town centre through trips starting within the Warwick wider area and stopping outside the outer cordon	7\%	6%	4%	6%
E	Local town centre trips stopping in the Warwick wider area.	7%	11\%	13\%	12%
F	Warwick wider area trips stopping in Warwick town centre.	10\%	12\%	13\%	9\%
G	Town centre traffic travelling long distance to outside the outer cordon.	4%	4%	4%	4%
H	Long distance trips arriving in Warwick town centre	5\%	5%	3%	4%
I	Warwick wider area trips leaving Warwick	19\%	17\%	20\%	18\%
J	Trips entering the Warwick wider area	15\%	15\%	22\%	19\%
K	Warwick wider are through trips	9\%	6%	5%	5%

ID	Move	Period			
		700-100	1000-1500	1500-1600	$0 \cdot 19$
A	Long distance town centre trips	6%	3%	2%	2%
B	Local town centre through trips	11\%	12\%	9\%	15%
C	Long distance town centre through trips starting outside the outer cordon and stopping within the Warwick wider area	7%	5\%	4%	6%
D	Long distance town centre through trips starting within the Warwick wider area and stopping outside the outer cordon	6\%	5\%	5%	3%
E	Local town centre trips stopping in the Warwick wider area.	8%	12\%	14\%	12%
F	Warwick wider area trips stopping in Warwick town centre.	11\%	13\%	13\%	10\%
G	Town centre traffic travelling long distance to ousside the outer cordon.	4%	5%	2%	3%
H	Long distance trips arriving in Warwick town centre	7%	5\%	3%	3%
I	Warwick wider area trips leaving Warwick	19\%	18\%	21%	18\%
J	Trips entering the Warwick wider area	15\%	16\%	22\%	19\%
K	Warwick wider are through trips	6%	7%	5\%	9%

Traffic passing through the inner cordon


```
The Arup Campus t t+44121213 3000
Blythe Gate f f44 1212133001
Blythe Valley Park
Solihull B90 8AE
United Kingdom
www.arup.com
```

| Project title A46/A4177 Assessment | Job number |
| :--- | :--- | :--- |
| | $232815-02$ |
| cc | File reference |

232815-02.TN002
Prepared by James Edwards Date

27 March 2014
Subject Warwick PARAMICS Modelling - A46/A4177 Assessment Overview

1.1 Introduction

This note has been produced to summarise the findings of the A46/A4177 scheme testing, this analysis has been extracted from the associated option test report which it is anticipated will be completed and available mid-April.

The scenarios that have been tested are as follows:

1. Warwick Town 2016 Reference
2. Warwick Town 2016 Scheme
3. Warwick Town 2021 Reference
4. Warwick Town 2021 Scheme

Results have been collected and analysed for the entire model AM and PM model periods as well as the respective peak hours (08:00 to 09:00 and 17:00 to 18:00).

Analysis has been undertaken to ascertain queuing and demand levels for all of the key junctions within the study area as well as the impact on delay along key routes within the model.

Key junctions within the survey data have been identified as being those which are most important to the study; these are also the junctions that have been used for the purposes of identifying the peak hours, namely:

- A46 SB Off-slip/ A425
- A425 SB On-slip/ A46
- A425/ IBM access
- A425/ Wedgnock Lane

Analysis of the aforementioned junctions has also been supplemented with analysis of the potential impacts on delay along the corridor alongside the queuing and throughput impacts.

File Note

1.2 Network Wide Statistics

The following sections set out the changes in network wide statistics between the Reference and the Scheme for the 2016 and 2021 scenario outputs.

1.2.1 Average Journey Speed

Analysis of the average journey speed $(\mathrm{Km} / \mathrm{H})$ within the Reference and the Scheme scenarios has been presented for the 2016 and 2021 AM and PM periods within the following Figure 1:
Figure 1 -Average speed per vehicle (km/h), 2016 and 2021

Analysis of the above figure shows that the average journey speeds are improved by 1-2\% during the AM peak period by implementation of the scheme in 2016 and 2021. During the PM peak period, the average journey speeds are reduced by approximately 3% in 2016 assuming implementation of the scheme. However, by 2021, implementation of the scheme results in a 5\% improvement in average vehicle speeds in the same period. It is clear from the above figure that vehicle speeds are generally lower during the PM peak period with respect to the AM peak period across the analysis years. This general reduction in average speeds is also prevalent when comparing the 2021 scenarios to the 2016 scenarios. This can be expected as the amount of vehicles on the road network will increase over time.

File Note

1.2.2 Average Journey Time (Seconds)

Analysis of the average journey times across the four scenarios has been presented for the 2016 and 2021 AM and PM periods within the following Figure 2:

Figure 2 -Average journey time (seconds), 2016 and 2021

Analysis of Figure 2 indicates there a general improvement in journey times with the implementation of the scheme in both 2016 and 2021. The exception to this is during the 2016 PM period where an approximate 3% increase in average journey time is expected assuming implementation of the scheme. Conversely, by 2021 a greater than 5% reduction in average journey times is expected during the same period.

1.2.3 Average Journey Distance

Analysis of the average journey distances across the four scenarios has been presented for the 2016 and 2021 AM and PM periods within the following Figure 3.

1.2.4 Completed Trips

Analysis of the number of completed trips across the four scenarios has been presented for the 2016 and 2021 AM and PM periods within the following Figure 4.

Analysis of Figure 4 indicates that there is a general slight increase in the number of vehicle trips completed across the AM and PM peak period in 2016 and 2021 assuming implementation of the scheme. The exception to this is during the PM peak period in 2016 where a negligible 0.1% decrease in completed trips is expected. These results appear to indicate that implementation of the scheme will allow the network to accommodate more trips by offering additional capacity.

File Note

232815-02
Figure 3Figure 3 indicates implementation of the scheme has a negligible effect on the average journey times across the AM and PM peak periods in both 2016 and 2021.

1.2.5 Completed Trips

Analysis of the number of completed trips across the four scenarios has been presented for the 2016 and 2021 AM and PM periods within the following Figure 4.

Analysis of Figure 4 indicates that there is a general slight increase in the number of vehicle trips completed across the AM and PM peak period in 2016 and 2021 assuming implementation of the scheme. The exception to this is during the PM peak period in 2016 where a negligible 0.1% decrease in completed trips is expected. These results appear to indicate that implementation of the scheme will allow the network to accommodate more trips by offering additional capacity.

File Note

232815-02
27 March 2014
Figure 3 - Average journey distance (km), 2016 and 2021

Figure 4 - Completed trips, 2016 and 2021

Because of the need for a cut off period it is never possible that 100% of the demand assigned within the model network will be a completed trip by the end of the model period. Some trips will have only just started when the model ends whilst some may be released onto the network later due to congestion effects.

To understand how much demand is either unreleased or left on the network at the end of the simulation period the number of completed trips has been compared against the total demand levels assigned within the model. This information has been presented within the following Table 1:

File Note

232815-02

Table 1 - Completed Trips Analysis (2016 and 2021)

	AM (07:00 to 10:00)			PM (16:00 to 19:00)		
	Demand	Completed Trips	Completed $\%$	Demand	Completed Trips	Completed $\%$
WT 2016 Reference	44697	44114	98.7%	47533	46766	98.4%
WT 2016 Scheme	44697	44122	98.7%	47533	46797	98.5%
WT 2021Reference	45545	44932	98.7%	48508	47618	98.2%
WT 2021 Scheme	45545	44904	98.6%	48508	47692	98.3%

The previous table illustrates that the number of trips that are completed during the AM and PM model period, as a percentage of the overall demand levels assigned to the model network, remains largely unchanged across the scenarios.

1.3 Summary

From the above analysis it can be seen that implementation of the scheme at the A46/ A4177/ A425 junction results in a general improvement of network wide statistics.

1.4 Stage 2 Analysis: Queuing

The second stage of analysis involved comparing the performance of the scheme with the maximum perceived extant levels assigned. The purpose of this stage of testing is to ascertain the performance of each scenario in terms of both queuing and delay across both AM and PM model periods. Furthermore, the extant levels that have been assigned to each scenario have been assigned on the basis of being the greatest possible level of extent that can be accommodated without queue propagation onto the A46 mainline. Assessing in the context of greater demand levels will allow any wider benefits to be identified whilst the higher levels of demand should make any potential issues more easily identifiable.

As a result the following scenarios have been used as the basis of this element of the assessment:

- Warwick Town 2016 Reference
- Warwick Town 2016 Scheme
- Warwick Town 2021 Reference
- Warwick Town 2021 Scheme

Results have been collected and analysed for the entire model AM and PM model periods as well as the respective peak hours ($08: 00$ to 09:00 and 17:00 to 18:00).

The queuing analysis has focussed on the following approaches to the A46/A425/A4177 Roundabout:

- A46 SB Off-slip/ A425
- A425 SB On-slip/ A46
- A425/ IBM access
- A425/ Wedgnock Lane

File Note

Analysis of the aforementioned junctions has also been supplemented with analysis of the potential impacts on delay along the corridor alongside the queuing and throughput impacts.
Queue routes have been defined within PARAMICS for the each of the approaches of the Junction shown in Figure 5:

Figure 5 - Junction location plot with approach arms

1.4.1 Arm A: A46 SB off-slip

Analysis has been undertaken to ascertain the difference in queuing and throughput levels at the A46 SB off-slip. The outcome of this analysis for all scenarios is shown in Figure 6 to Figure 9.

Figure 6 illustrates that average maximum queue lengths are considerably lower than the slip length in both design years when the scheme is implemented.

Assuming the scheme is not implemented, by 2016 the queue already exceeds the slip length of 460 m . By 2021 , the queue is expected to exceed the slip length by nearly 600 m and by 1100 m in 10% of cases. If the scheme was implemented there is expected to be approximately 350 m of excess capacity in the slip lane in both 2016 and 2021. This indicates that the alterations to the junction will take the capacity beyond 2021.

File Note

Figure 6 - A46 SB Off-slip/ A425 Average Max Queue Length (Metres) 'All Scenarios’ (0700-1000)

Figure 7 - A46 SB Off-slip/ A425 Average Max Queue Length (Metres) 'All Scenarios' (1600-1900)

Figure 7 shows that for all scenarios the queue in the PM peak period is not expected to exceed the slip length. This is to be expected as the flows along the A46 at this junction are tidal in that all flows are towards Warwick in the AM and away in the PM. It can be seen that the 2021 Scheme scenario results in the longest expected queue which is expected to be a maximum of approximately 350 m (shown in the confidence interval line).

File Note

232815-02 27 March 2014

Figure 8 - A46 SB Off-slip/ A425 Average Max Queue Length (vehicles) 'All Scenarios’ (07001000)

Figure 9 - A46 SB Off-slip/ A425 Average Max Queue Length (vehicles) 'All Scenarios' (1600-1900)

File Note

1.4.2 Arm B A425 WB

Figure 10 - A425 WB / A46 On-slip Average Max Queue Length (Metres) 'All Scenarios' (0700-1000)

Figure 11 - A425 WB / A46 On-slip Average Max Queue Length (Metres) 'All Scenarios' (1600-1900)

1.4.3 Arm B A425 WB

Figure 10 illustrates that implementation of the scheme results in longer queue lengths during the AM peak period in 2016 and 2021. The distance to the closest upstream junction that allows a small amount of residents to access Birmingham Road is approximate 95 m . Given the maximum queue

File Note

expected in 2016 and 2021 is approximately 110 and 106 m respectively, this junction could be blocked for short periods during the AM peak period. However there is currently "keep clear" signage painted on the road to allow residents to access the residential area/ Birmingham Road should this occur.

Figure 11 again indicates that the queues on the westbound approach of Birmingham Road are expected to be longer assuming the scheme is implemented in 2016 and 2021. Whilst in the AM peak period, the maximum peak period is expected to be approximately 110 m , during the PM peak period, this is expected to be nearly 130 m . This longer queue in the PM peak period is to be expected due to the tidal flow of traffic which is heading out from Warwick town centre in the afternoon as people leave work etc.

This length of queue is not expected to be an issue as mentioned previously the "keep clear" signage ensures the small amount of residents that need to access the upstream junction are able to do so.

Figure 12 - A425 WB / A46 On-slip Average Max Queue Length (Vehicles) ‘All Scenarios’ (07001000)

File Note

Figure 13 - A425 WB / A46 On-slip Average Max Queue Length (Vehicles) 'All Scenarios' (1600-1900)

1.4.4 Arm C A46 NB off-slip

Figure 14 - A46 NB off-slip /A4177 Average Max Queue Length (Metres) 'All Scenarios’ (0700-1000)

Figure 14 shows during the AM peak period, the maximum queue length expected in 2016 and 2021 is approximately 40% less should the scheme be implemented. However, given the 380 m slip length, there is not expected to be any overflow of the queue onto the A46 NB under any of the scenarios.

File Note

232815-02 27 March 2014

Figure 15 - A46 NB off-slip /A4177 Average Max Queue Length (Metres) 'All Scenarios' (1600-1900)

Figure 15 depicts a similar scenario in the PM peak period as to the AM peak period. Whilst the maximum queue lengths of the scheme scenarios are expected to be less than without the scheme, there is not expected to be any queuing or lane overflow issues in any scenario.

Figure 16 - A46 NB off-slip /A4177 Average Max Queue Length (Vehicles) 'All Scenarios' (0700-1000)

File Note

232815-02 27 March 2014

Figure 17 - A46 NB off-slip /A4177 Average Max Queue Length (Vehicles) 'All Scenarios' (1600-1900)

1.4.5 Arm D A4177

Figure 18 - A4177 on-slip/ A46 Average Max Queue Length (Metres) 'All Scenarios' (0700-1000)

File Note

232815-02
Figure 19-A4177 on-slip/ A46 Average Max Queue Length (Metres) 'All Scenarios' (1600-1900)
Average Maximum Queue Length (m) Birmingham Rd EB (16:00 to 19:00)

Figure 20 - A4177 on-slip/ A46 Average Max Queue Length (Metres) 'All Scenarios' (0700-1000)

File Note

232815-02
27 March 2014
Figure 21 - A4177 on-slip/ A46 Average Max Queue Length (Metres) 'All Scenarios’ (1600-1900)
Average Maximum Queue Length (veh.) Birmingham Rd EB (16:00 to 19:00)

Analysis of Figure 18 shows in the AM peak period, whilst the build-up of the queue is relatively equal across all four scenarios, implementation of the scheme results in an approximate 60% improvement in the maximum queues expected. This improvement can be attributed to the addition of a third slip lane for traffic to turn left from the westbound approach onto the A46 (northbound).

File Note

232815-02 27 March 2014

Figure 19 shows that implementation of the scheme results in reductions to queue lengths across the whole PM peak period with a maximum improvement of over 300 m representing approximately 90% of the reference case queues.

1.5 Delay Analysis

In addition to assessing the impact on junction performance measures that each option has, analysis has been undertaken to ascertain the potential impact on delay within the model that may arise as a result of the implementation of the scheme and associated extant development. Four routes have been identified for the analysis as follows:

- Route 1 - A46 Warwick By-Pass from the Woodloes Lane overpass to the A4177/ A425 junction
- Route 2 - A46 Warwick By-Pass from the A4177/ A425 junction to the south
- Route 3.1 - A4177 Birmingham Road from Charingworth Drive to Wedgnock Lane
- Route 3.2 - A4177 Birmingham Road from Wedgnock Lane to the Saltisford/ Theatre Street roundabout
These routes are illustrated in the following

File Note

232815-02 27 March 2014
Figure 22.

File Note

Figure 22 - Key Delay Routes

Since the flow pattern within the model is tidal, i.e. towards Warwick town centre in the AM and away from the site in the PM, the assessment of delay has been undertaken against the worst case conditions. As a result analysis of the impact on journey times into the Warwick town centre has been undertaken in the AM whilst, correspondingly, an assessment of the impact on delay of journey times out of the site has been undertaken within the PM.

1.6 Route 1 Analysis

Analysis of the impact on A46 southbound delay, across all four scenarios, during the AM peak hour is hour is presented within the following

File Note

232815-02
27 March 2014
Figure 23 whilst PM analysis of delay on the M40 northbound direction is presented within Figure 24.

File Note

232815-02
27 March 2014
Figure 23 - Route 1 SB AM (0700 to 1000) Average Journey Time (s)

Figure 24 - Route 1 SB PM (1600 to 1900) Average Journey Time (s)

Analysis of

File Note

Figure 23 reveals that a significant reduction in AM peak time delay is achieved through the implementation of scheme across years 2016 and 2021. Whilst there is little difference in delay expected between the scenarios from 0700-0745 and 0910-1000, between these periods, the improvement due to the scheme is marked.

During the AM peak period, implementation of the scheme is expected to result in a maximum improvement to delay of approximately 77% and 82% in 2016 and 2021 respectively. This results in a maximum average delay of 103 seconds and 106 seconds in 2016 and 2021 across the link. Conversely, without the scheme, the maximum average delays are expected to be 449 and 594 seconds in 2016 and 2021.

Given the tidal nature of the flow of traffic towards Warwick in the AM and away in the PM peak period, it is logical that the maximum queue expected on route 1 in the evening is approximately 75% less than that in the AM peak period. Further it can be seen that implementation of the scheme results in a reduction in the maximum queue length during this period in 2016 and 2021. By 2021, the maximum expected queue is approximately 150 m whilst assuming the scheme is implemented; this is reduced to approximately 90 m .

1.7 Route 2 Analysis

Analysis of the impact on A46 northbound delay, across all four scenarios, during the AM peak hour is presented within the following Figure 25 whilst PM analysis of delay is presented within Figure 26.

Figure 25 - Route 2 NB AM (0700 to 1000) Average Journey Time (s)

Figure 26 - Route 2 NB PM (1600 to 1900) Average Journey Time (s)

File Note

Analysis of Figure 25 reveals the level of traffic through this route has little bearing on the maximum delay expected. This is evident as the maximum delay of approximately 50 seconds remains relatively constant between all scenarios at the absolute peak occulting at approximately 0815. However, during the AM peak period, it is evident that implementation of the scheme results in an approximate 35% increase in delay along the route between the hours of 0700-0750 and 08301000. The average delay is approximately 35 seconds and 43 seconds under the reference scenarios and scheme scenarios respectively.

Analysis of Figure 26 reveals that whilst during the build-up and wind down of the delay across the route is approximately 33% higher if the scheme was implemented, the maximum delay is expected under the 2016 reference scenario. This peak delay is expected to occur at approximately 0810 hours and is 58 seconds. Assuming the scheme is implemented, this maximum delay is reduced to 43 and 44 seconds in 2016 and 2021 respectively.

1.8 Route 3.1 EB Analysis

Analysis of the impact on A4177/A425 Eastbound delay, across all four scenarios, during the AM peak hour peak hour is presented within the following Figure 27 whilst PM analysis of delay is presented within

File Note

232815-02 27 March 2014

Figure 28.
Figure 27 - Route 3.1 EB AM (0700 to 1000) Average Journey Time (s)

File Note

232815-02 27 March 2014

Figure 28 - Route 3.1 EB PM (1600 to 100) Average Journey Time (s)

Analysis of Figure 27 shows whilst the build-up of the peak delay across the route is relatively consistent across the four scenarios, implementation of the scheme results in a marked improvement in the maximum delay experienced in both 2016 and 2021. By 0820 hours, the maximum delay is approximately 540 and 563 seconds in the 2016 reference and 2021 reference scenarios respectively. This delay is reduced by 50% in both years assuming the scheme is introduced.

The results depicted in

File Note

Figure 28 indicate that the level of delay is relatively independent of the design year. During the PM peak period, the scheme results in an approximate 40% and 28% increase in delay across the route in 2016 and 2021 respectively. This is to be expected as the improvements are designed to improve conditions for the peak flow of traffic and in the PM peak period, this route is opposing the tidal flow and is heading towards Warwick town centre.

Whilst there is an increase in delay expected during the PM peak period for this route, this increase in relative terms is expected to be approximately $50-66$ seconds whilst the time savings in the AM peak period are 269-279 seconds in 2016 and 2021 respectively.

1.9 Route 3.1 WB Analysis

Analysis of the impact on A4177/A425 Westbound delay, across all four scenarios, during the AM peak hour peak hour is presented within the following

File Note

232815-02
27 March 2014
Figure 29 whilst PM analysis of delay is presented within Figure 30. The peak flow along this route occurs in the PM peak hour (away from Warwick town centre).

File Note

232815-02
27 March 2014
Figure 29 - Route 3.1 WB AM (0700 to 1000) Average Journey Time (s)

Figure 30 - Route 3.1 WB PM (1600 to 1900) Average Journey Time (s)

Analysis of

File Note

Figure 29 again indicates that the level of delay is relatively independent of the design year. The level of delay expected for all scenarios is relatively flat (consistent) across the AM peak period with a maximum delay expected of approximately 200 seconds should the scheme be implemented and 156 seconds should conditions remain the same. This equates to a 30% and 25% increase in 2016 and 2021 respectively.

During the PM peak period, the increase in delay along the route is approximately 29-39\% in 2016 and 2021 should the scheme be implemented. This represents a 51-68 second increase in delay.

1.10 Route 3.2 EB Analysis

Analysis of the impact on A4177/A425 Eastbound delay, across all four scenarios, during the AM peak hour is presented within the following Figure 31 whilst PM analysis of delay is presented within Figure 32. The peak flow along this route occurs in the AM peak hour (towards Warwick town centre). The purpose of analysing this route is to determine the downstream effect on traffic conditions given the improvements proposed for the A46/ A4177/ A425 junction.

Figure 31 - Route 3.2 EB AM (0700 to 1000) Average Journey Time (s)

Figure 32 - Route 3.2 EB PM (0700 to 1000) Average Journey Time (s)

File Note

232815-02 27 March 2014

Analysis of Figure 31 indicates that the build-up of the delay in the first 50 minutes of the period is relatively consistent across all four scenarios. However, implementation of the scheme results in an approximate 14% and 21% increase in the maximum delay expected in 2016 and 2021. This represents a 45 and 96 second increase in delay across the route in the AM peak period for 2016 and 2021.

Figure 32 shows that whilst the maximum delay is increased in 2016 should the scheme be introduced, by 2021 there is a 10% improvement in the delay experienced across the route.

1.11 Route 3.2 WB Analysis

Analysis of the impact on A4177/A425 Eastbound delay, across all four scenarios, during the AM peak hour is presented within the following Figure 33 whilst PM analysis of delay is presented within Figure 34. The peak flow along this route occurs in the PM peak hour (away from Warwick town centre). The purpose of analysing this route is to determine the downstream effect on traffic conditions given the improvements proposed for the A46/ A4177/ A425 junction.
Figure 33 - Route 3.2 WB AM (0700 to 1000) Average Journey Time (s)

File Note

Figure 34 - Route 3.2 WB AM (1600 to 1900) Average Journey Time (s)

The results depicted in Figure 33 show that the delay expected along the route is relatively consistent across the entire AM peak period for all four scenarios. This indicates that the improvements to the scheme upstream of this route have a negligible effect on the delay on the westbound traffic downstream on the A425 Birmingham Road. There is expected to be a 1% decrease in the maximum delay expected in 2016 and a 10% increase in maximum delay expected in 2021 across the route.

Figure 34 shows that implementation of the scheme upstream reduces the delay expected downstream on the A425. This is due to the addition of a left turn pocket for traffic approaching from the east, turning from the A425 to the A46 southbound proposed as part of the scheme. Overall there is expected to be a $56-58 \%$ decrease in delay across the route during the PM peak period in 2016 and 2021 respectively.

File Note

1.12 Summary

Analysis has been undertaken to ascertain the local and wider network impacts, on both AM and AM conditions, of the implementation of the scheme across the four scenarios. Analysis of the implementation of scheme, reveals that the following effects are likely to occur:

- A significant $346-488$ second (77-82\%) improvement to the maximum delay is expected along the A46 southbound_during the AM peak period
- A 5-54 second (5-36\%) improvement to the maximum delay is expected along the A46 southbound during the PM peak period
- An approximate 8% decrease and 5% increase to the maximum delay along the A46 northbound during the AM peak period in 2016 and 2021 is expected
- An approximate 25% decrease and 1% increase to the maximum delay along the A46 northbound during the PM peak period in 2016 and 2021 is expected
- A significant improvement in the delay expected along the A4177 eastbound in the AM peak period of approximately 270 seconds (50%)
- A $50-66$ second ($30-40 \%$) increase in delay in the PM peak period is expected along the A4177 eastbound in the PM peak period
- A 39-46 second ($25-30 \%$) increase in the maximum delay is expected along the A4177/ A425 westbound during the AM peak period and this is relatively consistent across the whole period
- A 51-68 second ($29-39 \%$) increase in the maximum delay is expected along the A4177/ A425 westbound during the PM peak period and this is relatively consistent across the whole period
- Whilst the build-up is relatively consistent across the scenarios, a $45-96$ second increase in the maximum delay is expected along the A425 Eastbound during the AM peak period
- A 125 second increase and 47 second decrease in the maximum delay is expected along the A425 Eastbound during the PM peak period
- The scheme has little effect on the delay expected across the entire AM peak period A425 Westbound in 2016 and 2021
- A 182-286 second decrease is expected in the maximum delay along the A425 westbound route in the PM peak period

Overall the scheme tends to significantly improve conditions in the direction of peak flow (towards Warwick Town Centre in the AM peak period and away in the PM peak period). These improvements sometimes appear to be at the detriment of opposing flows but it seems that the reductions in delay (in seconds) far outweigh the increases expected both local to the scheme and through the wider network. It should also be recognised that further optimisation of the schemes is possible. Furthermore these junctions would be implemented using SCOOT and MOVA signal control. This type of signal control is difficult to accurately model and it is likely that network improvements could be significantly greater in reality.

File Note

232815-02
27 March 2014

DOCUMENT CHECKING (not mandatory for File Note)

	Prepared by	Checked by	Approved by
Name	James Edwards		
Signature			

The Arup Campus	$\mathbf{t}+441212133000$
Blythe Gate	$\mathbf{f}+441212133001$
Blythe Valley Park	
Solihull B90 8AE	
United Kingdom	
www.arup.com	

Project title	A46/A4177 Assessment	Job number
		$232815-02$
cc	Warwickshire County Council	File reference
Prepared by	James Edwards	$232815-02 . \mathrm{TN} 001$
		Date
	27 March 2014	

Subject
A46/A4177 - Economic Analysis Overview

Introduction

 been derived to test ne sch mongsal In ddi or the sta idardm lelling outputs an

So that the outline economic analysis could be undertaken quickly and in a manner which was conversant with the modelling approach adopted thus far, it was decided that the assessment would be completed using the PARAMICS PEARS add-on (PARAMICS Economic Assessment of Road Schemes).

PEARS

PEARS (Program for the Economic Assessment of Road Schemes) is an economic assessment package that has been specifically designed for use with the output from traffic microsimulation models. The economic concepts in PEARS are consistent with the Fixed Trip Matrix methodologies of COBA and NESA (as detailed in DMRB Volumes 13 and 15).

PEARS carries out trip-based assessments of changes in travel time costs and vehicle operating costs. The costs of a trip-based assessment are derived by aggregating the costs of each individually modelled vehicle on the network. By comparison, traditional link-based assessments (e.g. COBA, NESA) and matrix based assessments (e.g. TUBA) rely on a single travel time and vehicle operating cost for each link or origin/destination movement representative of the whole modelled period and each vehicle classification modelled.

PEARS also includes the calculation and valuation of carbon emissions based on the parameter values and guidance presented in TAG Unit 3.3.5, The Greenhouse Gases Sub-Objective. The latest version of PEARS, and the one used for this particular assessment, includes a link to Transport Scotland's emissions software AIRE (Analysis of Instantaneous Road Emissions). This is the tool that was used to calculate the pollutant levels within the assessment.

File Note

232815-02
27 March 2014

PEARS does not at present consider accidents and therefore a separate accident assessment is required (usually an 'accident only' COBA or NESA assessment). In addition, at present, PEARS does not consider non-traffic related maintenance.

The results of a PEARS assessment are combined externally with results from the accident and maintenance assessments and input to the Transport Economic Efficiency (TEE) tables in support of the scheme.

Overview

The following section provides an overview of the assumptions that have been adopted within the PEARS assessment as well as, where necessary, providing justification for the rationale of any of those assumptions.

Key Assumptions

Scheme Costs

Based on information provided by WCC, the scheme costs for both the roundabout and signalised options were included at $£ 3.45$ million. These prices were based on January 2012 values with an RPI index of 238.0 and are inclusive of a 40% allowance for optimism bias.
The cost profile asso iated vit the deli ery th sc eme med 100% of t e scheme costs
would be borne in th

Scenario Years

The analysis has focussed on 2 test years, 2016 and 2021. The forecasting of these demands has been undertaken in line with national guidance and the factors have been derived through interrogation of the TEMPRO database. The forecasting process has been fully documented within the Local Model Validation and Forecasting Report that has been produced for the Warwick Town model.

Time periods

PEARS guidance states that it is acceptable that an urban junction may be presumed only to accrue significant benefits during peak periods. In this case, it may be reasonable for two 3hr periods only to be modelled, each with a multiplication factor of 253 , giving a total of 1,518 annual hours. Thus, the assessment focussed only on the AM (07:00 to 10:00) and PM (16:00 to 19:00) periods annualised by a factor of 253 . This approach does mean that the potential benefits that may be accrued within the Saturday period will not be accounted for within the analysis. Similarly any benefits or dis-benefits of implementation within the inter-peak will also be omitted from the economic analysis as a result of this approach.

Assessment Parameters

The opening year of the assessment was assumed to be 2016.
Traffic growth was capped at 2035 since NTEM does not, at this stage, assume any growth beyond this period.

File Note

232815-02
27 March 2014
The assessment period was constrained to 30 years as opposed to the 60 years recommended in WebTag, the benefit calculations would therefore continue up to 2046 but it assumes that the benefits from the implementation of the schemes would cease from that point onwards. The PARAMICS model predicts that a large saving in journey times is achieved through the implementation of the scheme and as the forecast period increases the disparity between the Reference Case and Scheme delays also increases. However, this assumes that the benefits continue to be delivered in a manner which is consistent with the 2016 to 2020 benefit accrual. In reality the benefits will begin to diminish towards the end of the life of the scheme and, furthermore it is unlikely that the current scheme will have a lifespan beyond 2046.

The calculation of the fuel costs within the PEARS assessment was based on outputs from the AIRE processor.

Accident and maintenance costs have not been included within the assessment at this time.

Outputs

The outputs from PEARS are presented in the form of TEE tables 15A, 15B and 15C, Further information on the underlying principles of economic assessment can be found in DMRB Volumes 13 and 15 and TAG Units 3.5.4 \& 3.5.6.

The TEE tables produced for both the signals and roundabout options are presented alongside this Technical Note.
 aforementioned asse sme pa meters. T e high BCR is m st ikely aff cted y the large levels of
 to reassign to alternative routes in response to the adverse conditions on the A46, thus queuing and delay continue to increase at a constant rate in the Reference Case when, in reality, the effects would most likely be dampened by the effects of route choice and the potential for reassignment away from the congested area of the model, this is further exacerbated by the fact that the A46 accommodate large volumes of traffic which means that the impacts that do occur affect a large number of vehicles.

Table 15A: Economic Efficiency of the Road System (Market Prices)
Scheme Title PEARS Analysis - A425/A46 Improvements (2016 vs. 2021)

IMPACT	Ref.	Cal'n / Source	Total	Cars	LGVs	OGVs	Private Coaches	Service Buses
NON-BUSINESS USER BENEFITS Travel Time Commuting Travel Time Other Travel Time Non-business Travel Time Vehicle Operating Costs Commuter Fuel VOC Commuter Non-fuel VOC Other Fuel VOC Other Non-fuel VOC Non-business Vehicle Operating Costs During Construction and Maintenance Commuting: During Construction and Maintenance (*) Other: During Construction and Maintenance (*)	$\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	$1+2$ $4+5+6+7$	$\begin{array}{r} £ 5.12 \\ £ 7.54 \\ £ 12.66 \\ \\ £ 0.51 \\ £ 0.06 \\ £ 0.56 \\ £ 0.06 \\ £ 1.19 \end{array}$	$\begin{aligned} & £ 4.72 \\ & £ 6.84 \\ & £ 0.51 \\ & £ 0.06 \\ & £ 0.55 \\ & £ 0.06 \end{aligned}$	$\begin{aligned} & £ 0.03 \\ & £ 0.09 \\ & \\ & £ 0.00 \\ & £ 0.00 \\ & £ 0.01 \\ & £ 0.00 \end{aligned}$		£0.00	$\begin{aligned} & £ 0.37 \\ & £ 0.62 \end{aligned}$
NET NON-BUSINESS BENEFITS: COMMUTING NET NON-BUSINESS BENEFITS: OTHER	$\begin{aligned} & \hline 11 \\ & 12 \end{aligned}$	$\begin{gathered} 1+4+5+9 \\ 2+6+7+10 \end{gathered}$	$\begin{aligned} & \hline £ 5.69 \\ & £ 8.16 \end{aligned}$					
NET NON-BUSINESS BENEFITS - SUB TOTAL	13	11+12	£13.85					
BUSINESS USER BENEFITS User Benefits Business Travel Time Fuel VOC Non-fuel VOC Business Vehicle Operating losts During Construction (*) During Maintenance (*) During Construction and Maintenance (*)	$\begin{aligned} & \mathbf{1 4} \\ & 15 \\ & 6 \\ & 1 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$	$18+19$		$\begin{array}{r} £ 61 \\ £ 0.17 \\ £ 0.33 \end{array}$	$\begin{aligned} & £ 1.59 \\ & £ 0.09 \\ & £ 0.04 \end{aligned}$	$\begin{aligned} & £ 0.14 \\ & £ 0.06 \\ & £ 0.05 \end{aligned}$	£0.00	£0.38
Subtotal	21	14+17+20	$£ 11.47$					
Private Sector Provider Impacts Revenue (*) Fuel VOC Non-fuel VOC Private Sector Vehicle Operating Costs Investment Costs (*) Grant / Subsidy (*)	$\begin{aligned} & 22 \\ & 23 \\ & 24 \\ & 25 \\ & 26 \\ & 27 \end{aligned}$	$23+24$	$\begin{aligned} & £ 0.19 \\ & £ 0.27 \\ & £ 0.46 \end{aligned}$				$\begin{aligned} & £ 0.00 \\ & £ 0.00 \end{aligned}$	$\begin{aligned} & £ 0.19 \\ & £ 0.27 \end{aligned}$
Subtotal	28	$22+25+26+27$	£0.46					
Other Business Impacts Developer \& Other Contributions (*)	29							
NET BUSINESS IMPACT	30	21+28+29	$£ 11.93$					
TOTAL PRESENT VALUES OF TEE IMPACTS	31	13+30	£25.79					

* Impact calculated external to PEARS \& manually input by User. Any manual inputs will require the manual recalculation of the Sub-Totals / Impacts etc. as well as the NPV \& BCR etc. in Table 15C.
This analysis is based on Central traffic growth.
Benefits appear as positive numbers, while costs appear as negative numbers.
All entries are in units of 1,000,000 pounds sterling and are discounted to 2002.
Evaluation period 30 years. Scheme opening year 2016.
Current year 2011.

Table 15B: Public Accounts
Scheme Title PEARS Analysis - A425/A46 Improvements (2016 vs. 2021)

IMPACT	Reference	Cal'c / Source	Total
Local Government Funding Revenue (*) Investment Costs (*) Operating Costs (*) Maintenance Costs Non-Traffic (Group 1) (*) Traffic Related (Group 2) (*) Developer \& Other Contributions (*) Grant Subsidy Payment (*)	$\begin{aligned} & 32 \\ & 33 \\ & 34 \\ & 35 \\ & 36 \\ & 37 \\ & 38 \end{aligned}$		
Net Impact	39	Sum(32 to 38)	
Central Government Funding: Transport Revenue (*) Investment Costs Operating Costs (*) Maintenance Costs Non-Traffic (Group 1) (*) Traffic Related (Group 2) (*) Developer \& Other Col ribut ns (*) Grant Subsidy Paymen (*)			$£ 1.79$
Net Impact	47	Sum(40 to 46)	£1.79
Central Government Funding : Non-Transport Indirect Tax Revenues	48		£0.90
TOTALS			
Broad Transport Budget Wider Public Finances	$\begin{aligned} & 49 \\ & 50 \end{aligned}$	$\begin{gathered} 39+47 \\ 48 \end{gathered}$	$\begin{aligned} & £ 1.79 \\ & £ 0.90 \end{aligned}$

[^4]Table 15C: Analysis of Monetised Costs and Benefits (Market Prices)
Scheme Title PEARS Analysis - A425/A46 Improvements (2016 vs. 2021)

IMPACT	Reference	Cal'n / Source	Total
TEE Impacts			
Noise (*^)	51		
Local Air Quality (*^)	52		
Greenhouse Gases (Emissions) (low)			£0.14
Greenhouse Gases (Emissions) (central)	53		£0.28
Greenhouse Gases (Emissions) (high)			$£ 0.43$
Journey Ambience (*^)	54		
Accident Benefits (*)	55		
Non-Business User Benefits: Commuting	56	11	$£ 5.69$
Non-Business User Benefits: Other	57	12	£8.16
Business User \& Provider Benefits	58	30	£11.93
Wider Public Finance (Indirect Tax Revenue)	59	-50	£-0.90
Option Values (*^)	60		
Present Value of Benefits (PVB)	61	Sum(51 to 60)	£25.17
Broad Transport Budget	62	49	£1.79
Present Value of Cos (PV)		62	£1.79
OVERALL IMPACT			
Net Present Value (NPV)	64	61-63	£23.38
Benefit to Cost Ratio (BCR)	65	61/63	14.03

* Impact calculated external to PEARS \& manually inputted by User. Any manual inputs will require the manual recalculation of the NPV \& BCR etc.
${ }^{\wedge}$ Costs \& benefits which are regularly or occasionally presented in monetised form in transport appraisals, together with some where monetisation is in prospect.

In addition to the costs \& benefits outlined above, there may also be significant others, some of which cannot be presented in monetised form. Where this is the case, the analysis presented above does not provide a good measure of the value for money (VFM) and should not be used as the sole basis for decisions.
This analysis is based on Central traffic growth.
Benefits appear as positive numbers, while costs appear as negative numbers.
All entries are in units of 1,000,000 pounds sterling and are discounted to 2002.
Evaluation period 30 years. Scheme opening year 2016.
Current year 2011.

Appendix G

Scheme Impact Pro Forma for Small Project Bids

Scenario	Input Data / Key Performance Indicators	Unit	AM Peak Hr	PM Peak Hr	Inter-Peak Hr	Nights	Sat	Sun
			Weekday	Weekday	Weekday	19:00-07:00	07:00-19:00	07:00-19:00
2021 Ref Case Outputs - Peak Hours	Number of highway trips affected	vehicles	19,611	18,129	14,488	5,650	8,701	11,486
	Total vehicle travelled time	vehicle-hours	1,543	1,366	1,094	427	657	867
	Total vehicle travelled distance	vehicle-km	48,388	46,695	35,719	13,930	21,453	28,318
	Total network delays	vehicle-hours	851	699	586	229	352	465
	Highway peak period conversion factor	-	2.32	2.67	1	0	1	1
	Number of PT passenger trips on affected routes	passenger trips						
	Bus journey time on affected routes	minutes						
	Total PT travelled time	passenger-hrs						
	Total PT travelled distance	passenger-km						
	PT peak period conversion factor	-						
	Number of walking and cycling trips	person trips						
	Mode share in affected area							
	- Walking and cycling	person trips						
	- Bus/BRT	person trips						
	- Rail	person trips						
	- Car	person trips						
	- Total	person trips						

For Small Project Bids

2021 Ref Case Outputs - Peak Hours

	AM Peak Hr	PM Peak Hr	Inter-Peak Hr
Vehicle Category	Weekday	Weekday	Weekday
Car Work			
Car Non-work Commuting			
Car Non-work Other			
Average Car	88\%	88\%	91\%
LGV	11\%	10\%	8\%
OGV1	1\%	1\%	1\%
OGV2	0\%	1\%	0\%
PSV			
All Total	100\%	100\%	100\%
Public Transport			
Bus Work			
Bus Non-work Commuting			
Bus Non-work Other			
Bus Total	0\%	0\%	0\%
Rail Work			
Rail Non-work Commuting			
Rail Non-work Other			
Rail Total	0\%	0\%	0\%

| | AM Peak Hr | PM Peak Hr | Inter-Peak Hr |
| :--- | :--- | :--- | :--- | :--- |
| Average Network Speed (kph) | Weekday | Weekday | Weekday |
| Car | 54.6 | 55.5 | 50.7 |
| LGV | 54.8 | 54.4 | 49.7 |
| HGV \& PSV | 55.6 | 54.4 | 54.0 |

Scheme Impact Pro Forma for Small Project Bids

Scenario	Input Data / Key Performance Indicators	Unit	AM Peak Hr	PM Peak Hr	Inter-Peak Hr	Nights	Sat	Sun
			Weekday	Weekday	Weekday	19:00-07:00	07:00-19:00	07:00-19:00
2021 Do Something Outputs - Peak Hours	Number of highway trips affected	vehicles	19,482	18,114	14,404	5,617	8,651	11,419
	Total vehicle travelled time	vehicle-hours	1,458	1,274	1,050	409	631	832
	Total vehicle travelled distance	vehicle-km	48,077	46,318	35,279	13,759	21,189	27,969
	Total network delays	vehicle-km	771	609	548	214	329	434
	Highway peak period conversion factor	-	2.34	2.68	1	0	1	1
	Number of PT passenger trips on affected routes	passenger trips						
	Bus journey time on affected routes	minutes						
	Total PT travelled time	passenger-hrs						
	Total PT travelled distance	passenger-km						
	PT peak period conversion factor	-						
	Number of walking and cycling trips	person trips						
	Mode share in affected area							
	- Walking and cycling	person trips						
	- Bus/BRT	person trips						
	- Rail	person trips						
	- Car	person trips						
	- Total	person trips						

For Small Project Bids

2021 Do Something Outputs - Peak Hours

	AM Peak Hr	PM Peak Hr	Inter-Peak Hr
Vehicle Category	Weekday	Weekday	Weekday
Car Work			
Car Non-work Commuting			
Car Non-work Other			
Average Car	87.71%	88.07%	91.09%
LGV	10.98%	9.79%	8.14%
OGV1	1.09%	1.29%	0.66%
OGV2	0.22%	0.86%	0.11%
PSV			
All Total	100%		
Public Transport			100%
Bus Work			100%
Bus Non-work Commuting			
Bus Non-work Other			
Bus Total			0%
Rail Work			
Rail Non-work Commuting			
Rail Non-work Other			
Rail Total			

	AM Peak Hr	PM Peak Hr	Inter-Peak Hr
Average Network Speed (kph)	Weekday	Weekday	Weekday
Car	55.7	55.2	50.7
LGV	55.3	54.4	50.3
HGV \& PSV	56.9	54.4	54.1

Appendix H

Appendix I

Risk allocation and transfer between the promoter and contractor, contract timescales and implementation timescales

A452/A46 Thickthorn - SEP
A425/A46 Stanks - SEP
A444 Coton Arches - SEP
A426 Avon Mill - SEP
For the above schemes, the preferred balance of risk between the promoter and contractor is as set out between the Employer and Contractor in the NEC3
Engineering and Construction Contract (ECC) Option A Priced Contract with Activity Schedule (June 2005 with June 2006 and September 2011 amendments). The standard conditions of contract (the core clauses) have been amended as follows:

Clause Z1 Modifications to the core conditions of contract

Z1.1 Identified and defined terms 11

Add new sub-clause:
11.2 (34) Statutory Bodies are Others which have a statutory right or a right pursuant to a licence granted under statute to enter onto the Site to carry out their business.

Z1.2 Interpretation and the law 12
Add new sub-clause:
12.5 In the event of any conflict between

- the terms of core clauses 1 to 9 of this contract,
- the terms of Secondary Option clauses,
- the requirements of statements in Contract Data Parts one and two,
- the Works Information, and
- the Site Information,
the relevant clauses of this contract and/or the relevant documents prevail in the order set out above, save that, if any Z clauses (which form part of the Secondary Option clauses) conflict with the terms of core clauses 1 to 9 of this contract and/or any other parts of the Secondary Option clauses, the Z clauses shall prevail.

Z1.3 Subcontracting 26
Add new sub-clause:
26.5 If, in accordance with sub-clause 26.2, the Project Manager does not accept a proposed Subcontractor, it is not a compensation event and the Contractor is not relieved of any liability or obligation under this contract.

Z1.4 Subcontracting 26
Add new sub-clause:
26.6 The Project Manager may instruct the Contractor to remove a Subcontractor. A reason for removing a Subcontractor is

- inadequate or poor quality workmanship,
- incompetent or negligent performance,
- uncooperative or disruptive working practices or
- failure to operate a quality management system.

If, in accordance with this sub-clause, the Project Manager instructs the Contractor to remove a Subcontractor, the Contractor arranges for the removal of the Subcontractor and proposes an alternative Subcontractor. The Project Manager's instruction to remove a Subcontractor is not a compensation event and the Contractor is not relieved of any liability or obligation under this contract.

Z1.5 Latent Defects 46

Add new sub-clause:
46.1 Without prejudice to the Contractor's obligations under clause 43, the Contractor is liable in respect of any and all Defects not discoverable on inspection or testing for a period of 12 years from the completion date for the whole of the works.

Z1.6 Payment 51

Delete the text at sub-clause 51.1 and substitute with the following:
51.1 The Project Manager certifies a payment on or before the date when a payment is due. The first payment is the amount due. Other payments are the change in the amount due since the last payment certificate. A payment is made by the Contractor to the Employer if the change reduces the amount due. Other payments are made by the Employer to the Contractor. Payments are in the currency of this contract unless otherwise stated in this contact.

Z1.7 Payment 51

Delete the text at sub-clause 51.2 and substitute with the following:
51.2 Each certified payment is made on or before the final date for payment. If a certified payment is late, or if a payment is late because the Project Manager does not issue a certificate which he should issue, interest is paid on the late payment. Interest is assessed from the date by which the late payment should have been made until the date when the late payment is made, and is included in the first assessment after the late payment is made.

Z1.8 Defined Cost 52

Add new sub-clause:

> For elements of Defined Cost calculated at competitively tendered prices, two quotations shall be obtained for competitively tendered amounts below $£ 10,000$ and three quotations shall be obtained for competitively tendered amounts of $£ 10,000$ and above.

Z1.9 Compensation events 60
Delete the text at sub-clause 60.1 (12) and insert 'Not used'.
Z1.10 Compensation events 60
Delete the text at sub-clause 60.2 and substitute with the following:

- encounters physical conditions which in his opinion could not reasonably have been foreseen at the Contract Date by an experienced contractor and
- considers that significant delay will be caused by such physical conditions, he gives notice to the Project
Manager stating
- the nature, extent and type of physical conditions encountered
- the reasons for not foreseeing them at the Contract Date
- the measures proposed to overcome them
- the effect if any on the quality or durability of the works
- the effect if any on the Accepted Programme and
- the forecast Defined Cost of any necessary extra work.

Within the period for reply the Project Manager either

- notifies the Contractor that he has no objections (determined by the Project Manager in his sole discretion) to the proposed measures. The Contractor then implements such measures and, notwithstanding anything to the contrary in these conditions of contract, shall be responsible for the costs of implementing such measures save to the extent that the Project Manager deems them to necessitate a change to the Works Information and the test set out in sub-clause 60.1(1) is met, in which case Clauses 61 to 65 shall apply (save that the notification and quotation have already been submitted); or
- notifies the Contractor of his reasons for not accepting the measures (determined in the Project Manager's sole discretion). If the Project Manager notifies the Contractor of his reasons for not accepting the measures the Project Manager and the Contractor shall meet within five working days of such notification by the Project Manager and the Parties will use their reasonable endeavours to agree alternative measures. In the event that the Parties cannot agree the alternative measures then they shall be determined by the Project Manager in his sole discretion and notified to the Contractor. The Contractor then implements such measures and, notwithstanding anything to the contrary in these conditions of contract, shall be responsible for the costs of implementing such measures save to the extent that the Project Manager deems them to necessitate a change to the Works Information and the test set out in sub-clause 60.1(1) is met, in which case Clauses 61 to 65 shall apply.

In judging the physical conditions, the Contractor is deemed to have taken into account within his Prices the following actions

- carried out an inspection of the Site, its surroundings and any existing structures or works on, over or under the Site relevant to the construction of the works;
- satisfied himself as to the form and nature of the Site in regard to
- climatic and hydrological conditions
- likely ground and subsoil conditions
- the risk of damage to property adjacent to the Site
- the risk of injury to occupiers of such property
- likely restrictions or precautions relating to nearby farmland
- the risk of pollution and damage to the environment
- likely materials (whether natural or otherwise) to be excavated
- the risk of the presence of hazardous or toxic substances or waste
- the risk of injury to Subcontractors or the Contractor's people due to the presence of hazardous or toxic substances or waste and
- types of Plant and Materials required to construct the works;
- satisfied himself as to
- means of communication with people on the Site
- access to and through the Site
- accommodation requirements
- requirements of Others for access to the Site
- interference by persons with access to or use of the Site
- risks of interference by protesters or trespassers and
- precautions to prevent nuisance or interference by third parties;
- in general obtained for himself
- all necessary information as to risks and
- all necessary Site Information
so as to meet his obligation to Provide the Works.

Z1.11 Assessing compensation events 63

Delete the text at sub-clause 63.1 and substitute with the following:
63.1 The changes to the Prices are assessed as the effect of the compensation event upon

- the actual Defined Cost of the work already done
- the forecast Defined Cost of the work not yet done and
- the resulting Fee.

The date when the Project Manager instructed or should have instructed the Contractor to submit quotations divides the work already done from the work not yet done. For compensation events which arise from a weather measurement under clause 60.1 (13), there are no changes to the Prices.

Z1.12 Assessing compensation events 63
Delete the text at sub-clause 63.5 and substitute with the following:
63.5 If the Project Manager has notified the Contractor of his decision that the Contractor did not give an early warning of a compensation event which an experienced contractor could have given, the event is assessed as if the Contractor had given early warning and any payments and/or time extensions are reduced accordingly.

Z1.13 Assessing compensation events 63
Delete the text at sub-clause 63.8 and substitute with the following:
63.8 A compensation event which is an instruction to change the Works Information in order to resolve an ambiguity or inconsistency is assessed as if the total of the Prices and the Accepted Programme were, for the original Works Information, based upon an interpretation of the ambiguity or inconsistency which assumed

- the highest total of the Prices and
- the Accepted Programme with the longest duration.

Z1.14 The Project Manager's assessments 64
Delete the words 'two weeks' in the fifth line of sub-clause 64.4 and substitute with 'three weeks'.

Z1.15 Objects and materials within the Site 73
Delete the text at sub-clause 73.2 and substitute with the following:
73.2 Except where material has been identified as being an object of value or historic interest or of other interest, or the contract defines the material to be retained, the Contractor has title to materials from excavation or demolition.

Z1.16 Termination 90
Delete the Termination Table under sub-clause 90.2 and substitute with the following Termination Table:

TERMINATION TABLE			
Terminating Party	Reason	Procedure	Amount due
The Employer	A reason other than R1-R22		
	R1-R15, R18 or R22 R17 or R20 $R 21$	P1 and P2 P2 and P3 $P 1$ and P3	A1, A2 and A4
The Contractor	R1-R10, R16 or R19		
R17 or R20	P1 and P4 and A3 P4		

Z1.17 Reasons for termination 91
Add new sub-clause:
91.8 The Employer may terminate without notice if he becomes aware:

- of the Contractor's involvement in corrupt practices or
- of the Contractor's involvement in collusive activity or
- that the Contractor has submitted false or inaccurate information in his tender submission (R22).

Either Secondary Option X4 (Parent company Guarantee) or X13 (Performance Bond) are used. The other Secondary Options used are X7 (Delay Damages), X16 (Retention) and $Y(U K) 2$ (The Housing Grants, Construction and Regeneration Act 1996).

Appendix J

Part 2 - Updated Transport and Economics Outputs

Tech Note

Project title	A425/A46 Stanks Scheme	Job number
Cc	Nicola Van der Hoven Nigel Chetwynd Gevan Sandhu Adrian Hart Mike Peet	File reference
Prepared by	Alan Law	Date

Subject Selecting a preferred option post VE exercise

1 Introduction

A Value Engineering(VE) process has been undertaken with the aim of reducing the impact of high C3 utilities estimates. A redesign of the scheme resulted in 6 potential options being identified. This technical note provides a summary of the modelling optioneering process undertaken in order to identify a preferred option. This note is based on detailed modelling outputs and analysis with the following documents:

- VM155028_20160106 Stanks - 6 Test Models - Initial Outputs.xls
- VM155020.TN20160106 - Stanks 6 Scenario Assessment Overview

2 Overview

The following scenarios were considered through the modelling optioneering assessment:

- Reference - Contains the current road layout with traffic volumes forecast to 2021 levels.
- \quad Scenario 01 - The Reference Case inclusive of the current corridor. The scheme has been changed from the original SEP scheme proposals in a number of ways but the main differences include the reduction of the two lane section to the west of the A425/Industrial estate junction which is due to be signalised and reconfiguration of that junction from three lane entry to the west with a right turn bay to a two lane entry with the right hand lane for right turning traffic only.
- Scenario 02 - Scenario 01 with the reconfiguration of the industrial estate (Budbrooke Rd) signals so that two lanes travel WB across the junction (right hand lane is right and straight-on).
- \quad Scenario 03 - As Scenario 02 but with the inclusion of a two lane merge east of Wedgnock/Birmingham Road junction.
- \quad Scenario 04 - Scenario 01 without signals at the industrial estate.
- Scenario 05 - Scenario 02 without signals at the industrial estate.
- \quad Scenario 06 - Scenario 03 without signals at the industrial estate.

Each of the above options, identified by Design Services, has been subject to the VE process. Cost estimates for each scheme are very similar at circa $£ 6 \mathrm{~m}$. A drawing of the preferred option (Scenario 4) is appended to this note.

Tech Note

Modelling Results

Model Stability

S-Paramics software requires that a scenario is run a number of times (each based on a random seed) and then an average of these runs is reported upon. The propensity for a model to fail during these model runs is a primary key indicator of the scenario performance. Each scenario is then reported on in comparison to the reference case scenario.

Supporting evidence identifies inherent instability within Scenarios 02 and 05 and therefore these scenarios should be discounted.

It is notable that only scenario 04 performs as well or better than the Reference Case, all other scenarios suffer a reductions in model stability. All PM period scenarios in which signals have been included at the Budbrookee junction do not return acceptable levels of stability.

Network Statistics

The network statistics provide a number of Key Network Performance Indicator (KPI) comparisons. In this instance, the comparisons have focussed on the average delay, in seconds, across the entire model period.

Analysis of the average delay reveals that:

- all scenarios which contain the signals at the Budbrooke Rd junction suffer higher levels of delay than the Reference Case during the AM and Scenario 02 and 03 are also higher in the PM period.
- scenario 04 to 06 all return lower levels of delay than the Reference Case during both AM and PM periods.
- removal of the signals also appears to result in average delay levels which are less than those contained in the previous scheme scenario network (scenario 07).

Based on the improvements in delay, relative to the previously proposed layout results, there is a demonstrable benefit arising from the removal of the signals at the Industrial Estate (Budbrooke Rd.

Queue Lengths

Average maximum queue lengths, for the Stanks junction and Wedgnock Lane signals have been assessed. The following analysis can be drawn from the results:

- all scenarios reduce queuing in the AM period on the A46 sb approach to Stanks compared to Reference Case conditions
- all scenarios reduce queuing in the PM period at the Wedgnock junction compared Reference Case conditions
- scenario 04 performs better than scenario 06

Economic Appraisal

Following the optioneering process, it was clear that scenario 04 out performs all other scenarios. A revised BCR assessment was undertaken on scenario 04 to ascertain the impact of the revised network changes and costs on economic performance.

Based on an assumed scheme cost of $£ 6 \mathrm{~m}$, a BCR was calculated at 5.75 . This revised BCR is a minor improvement over the previous BCR (5) which was based on an undervalued scheme estimate of approx.. $£ 5 \mathrm{~m}$ (undervalued due to increased utilities costs).

Tech Note

3 Summary \& Conclusions

Based on the above analysis and supporting evidence, Scenario 04 outperforms all other scenarios considered as part of this modelling optioneering process.

The first 3 scenarios assume the implementation of signals at Budbrookee Rd junction (IE access). The results clearly identify that, with reduced approach lanes from the west, all signal layouts at Budbrookee Rd perform poorly compared to the w/o signals scenarios (4-6). It is likely that the original scheme would also have performed better w/o signals, however excessive utilities costs prohibit the delivery of the original layout.

Scenarios $04-06$ present layouts w/o signals, of these, scenario 05 should be discounted due to instability resulting from poor operation. Queue length outputs and network statistic highlights that scenario 04 performs better than scenario 06 .

The evidence clearly identifies scenario 04 as the preferred option in terms of highway capacity performance, as such, the scheme was subjected to a further iteration of economic appraisal which resulted in a revised BCR value of 5.75 ($£ 6 \mathrm{~m}$ assumed scheme cost). This is a slight improvement over the previously assessed scheme which returned a BCR of 5 based on a $£ 5 \mathrm{~m}$ scheme cost.

DOCUMENT CHECKING (not mandatory for File Note)

	Prepared by	Checked by	Approved by
Name	Alan Law		
Signature			

	A46/A4177/A425 Stanks Island -		
	Updated Junction Layout Assessment		
Project title	Stanks Business Case Refresh	Job number	VM155028
cc	Warwickshire County Council	File reference	VM155020.TN20160106
Prepared by	James Edwards	Date	6 January 2016

Introduction

1. Vectos Microsim (VM) have been asked by Warwickshire County Council (WCC) to assess 6 alternative layouts to the junction proposals along the A4177/A425 between Old Budbrook Road and Wedgnock Road.
2. This Note has been produced to accompany the results extracted from those models which are presented within the accompanying spreadsheet (VM155028_20160106 Stanks - 6 Test Models - Initial Outputs).

Scenarios

3. The results spreadsheet provides model outputs for a total of 8 scenarios. A summary of the scenario composition is provided as follows:

- Reference - Contains the current road layout with traffic volumes forecast to 2021 levels.
- \quad Scenario 01 - The Reference Case inclusive of the current corridor proposals as confirmed by WCC. The scheme has been changed from the original SEP scheme proposals in a number of ways but the main differences include the reduction of the two lane section to the west of the A425/Industrial estate junction which is due to be signalised and reconfiguration of that junction from three lane entry to the west with a right turn bay to a two lane entry with the right hand lane for right turning traffic only.
- Scenario 02 - Scenario 01 with the reconfiguration of the industrial estate signals so that two lanes travel WB across the junction (right hand lane is right and straight-on).
- Scenario 03 - As Scenario 02 but with the inclusion of a two lane merge east of Wedgnock/Birmingham Road junction.
- Scenario 04 - Scenario 01 without signals at the industrial estate.
- Scenario 05 - Scenario 02 without signals at the industrial estate.
- Scenario 06 - Scenario 03 without signals at the industrial estate.

4. Additionally Scenario 07 within the results spreadsheet reflects the performance of the most recently assumed scheme layout prior to the inclusion of the changes outlined for Scenario 01.

Results Analysis

5. The following provides a high level overview of the results extracted from the aforementioned model scenarios:

Model Stability

6. It is apparent from the model stability that Scenario 02 and 05 produce very poor levels of stability. This is because the conversion of the right hand lane to accommodate the straight on movement means that vehicles wishing to continue into Warwick along the Birmingham Road will choose to enter into the right hand lane earlier than was previously assumed. The path of these vehicles can easily be blocked by the presence of vehicles wishing to turn right into the industrial estate.
7. With the PM this increases the propensity for queued vehicles to extend back into the single lane section because of the large volumes of traffic exiting Warwick which oppose the right turners into the industrial estate. If this happens at the same time as the signals at the IBM junction release WB traffic it can quickly cause queues which extend back into the main A46 Island.
8. The balance of flows and turning movements at Stanks Island, during the PM peak, are such that the blocking back onto the island can quickly cause the junction to 'lock-up'. Runs from models which have locked-up are discounted on the fact that they do not reflect a realistic scenario, in reality vehicles will squeeze round other cars or let others in out of courtesy to ensure a junction continues to operate. Such, subjective, behaviours are not replicated within Paramics. Thus, whilst it is highly likely that the lock-up overestimates the severity of the problem, a high propensity for model lock-ups is still symptomatic of a significant issue that will require further attention.
9. Based solely on the model stability it is recommended that the layouts proposed in Scenario 02 and 05 are discounted as the conversion of the right hand lane to accommodate the straight on movement means that the propensity for traffic to block back into the Stanks Island increases significantly leading to an unacceptable reduction in model stability.
10. Some instances of model lock-ups are inevitable within the Warwick Town model due to the large volumes of traffic forecast to occur on the model network coupled with the complex layout of some junctions (such as The Butts).
11. As a result, the inherent instability is assumed to be represented by the Reference Case stability levels. It is notable that only Scenario 04 performs as well or better than the Reference Case, all other scenarios suffer reductions. Stability levels lower than 60\% to 65\% are considered particularly poor and most likely to be classified as unacceptable. In this instance all PM scenarios in which signals have been included within the model at the Industrial estate junction do not return acceptable levels of stability.

Network Stats

12. The network statistics provide a number of Key Network Performance Indicator (KPI) comparisons.
13. In this instance, the comparisons have focussed on the average delay, in seconds, across the entire model period.
14. Analysis of the average delay reveals that all scenarios which contain the signals at the Industrial Estate junction suffer higher levels of delay than the Reference Case during the AM and Scenario 02 and 03 are also higher in the PM period.
15. Furthermore, scenario 04 to 06 all return lower levels of delay than the Reference Case during both AM and PM periods. The removal of the signals also appears to result in average delay levels which are less than those contained in the previous scheme scenario network (scenario 07).
16. Based on the improvements in delay, relative to the previously proposed layout results, there is a demonstrable benefit arising from the removal of the signals at the Industrial Estate junction as it reduces delay, overall on the network and, potentially compensates for the additional delay likely to occur as a result of the capacity restriction associated with the removal of the second WB lane west of the Industrial Estate.
17. Delays are lowest in the AM in Scenario 04 and they are lowest within the PM in Scenario 06 (scenario 05 is discounted due to poor stability). Therefore, in terms of overall network delay, either layout proposed in Scenario 04 or Scenario 06 is considered preferable to the other layouts tested.

Hourly Averages

18. The 'Hourly Averages' tab provides the average maximum queue lengths, in metres, for the two junctions on either side of the corridor.
19. Within the AM peak hour, all scenarios are predicted to reduce queueing levels experienced by vehicles exiting the A46 from the north. However, within Scenarios 01 to 03 this reduction is achieved at the expense of vehicles approaching from the West. The signal configuration of the main Stanks Island better accommodates the movement from the A46 (N) towards Warwick through the synchronisation of the signals.
20. If the exit to the IBM junction is blocked then this quickly extends back to Stanks Island which, in the AM, means that there is restricted capacity for the A4177 WB traffic since any gaps are being filled by vehicles approaching from the A46(N).
21. During the PM all layouts reduce the queueing levels experienced on the Wedgnock Road junction approaches.
22. When comparing Scenario 04 and Scenario 06 it is apparent that there are more 'spikes' in queueing levels in Scenario 06 than 04 and the same is true of the PM queueing levels also. This can be considered to indicate that, in queueing terms, if adopted Scenario 04 is likely to perform better than Scenario 06.

Economic Appraisal

23. VM have also undertaken a rerun of the PEARS assessment that was recently completed for the scheme proposals. The assumptions adopted within the updated PEARS assessment are consistent with those reported within the recent SEP submission with the exception of the scheme design which is as per Scenario 04 and the scheme costs which were assumed to be £6 million.
24. The revised BCR produced as a result of the PEARS rerun was calculated at 5.75 indicating a minor improvement over the previous PEARS run which has most likely occurred as a result of the additional improvement in scheme performance, and associated reduction in mean delay, that has occurred as a result of the removal of the signals.
25. It should be noted that it is also highly likely that an improvement in the BCR would have occurred had the signals been removed from the scheme assumptions recently submitted to the SEP.

Conclusions

26. Based on the analysis set out previously it is reasonable to conclude the following:

- The reduction of the two lane WB section approaching the Birmingham Road/Industrial Estate junction is likely to induce severe impacts with regards the overall network performance.
- Configuration of the signalised junction at the Industrial Estate entrance to accommodate two lanes WB is considered highly undesirable as the modelling indicates that this could increase the risk of exit blocking with regards the signalised IBM junction. If this occurs in the PM period it could significantly affect the performance of Stanks Island and so should therefore be avoided.
- Removing the signals at the Industrial estate entrance improves the overall performance of the scheme considerably. By allowing traffic in the left hand lane to travel through the junction virtually unopposed there is a substantial reduction in the overall delay experienced on the network and the propensity for queue propagation back to Stanks Island is minimised.
- Scenario 04 appears less prone to 'spikes' in queueing levels than Scenario 06 and could therefore be considered the most desirable layout for delivery.

Points of Consideration

27. Some additional points of consideration, not acknowledged within the previous text, have been documented within the following section:
28. It should be acknowledged that whilst the signal times were optimised for Scenario 01 they were not then revised for each alternative scenario. This means that the results from each scenario can be considered to be comparable but it overlooks the potential for scenario specific signal times to be adopted which further reduce the delays reported on within each scenario. However, such changes are likely to induce only small improvements in network
performance and any major issues identified (such as model stability) would be unlikely to be affected by the alterations.
29. There is a noticeable increase in the potential for queues to occur on Old Budbrook Road which has not been reported on within this first sift of analysis. Thus further optimisation of the signals at this junction may also merit further investigation since the formation of the queues appears to be directly related to the new junction layout which restricts capacity in comparison to the layout tested previously.

DOCUMENT CHECKING

	Prepared by	Checked by	Approved by
Name	James Edwards	Alan Law	James Edwards
Date	$06 / 01 / 2016$	$07 / 01 / 2016$	$11 / 02 / 2016$

Table 15A: Economic Efficiency of the Road System (Market Prices)
Scheme Title PEARS Analysis - A425/A46 Improvements (2016 vs. 2021) Jan Revised

IMPACT	Ref.	Cal'n / Source	Total	Cars	LGVs	OGVs	Private Buses \& Coaches	Service Buses
NON-BUSINESS USER BENEFITS Travel Time Commuting Travel Time Other Travel Time Non-business Travel Time Vehicle Operating Costs Commuter Fuel VOC Commuter Non-fuel VOC Other Fuel VOC Other Non-fuel VOC Non-business Vehicle Operating Costs During Construction and Maintenance Commuting: During Construction and Maintenance (*) Other: During Construction and Maintenance (*)	2 3 4 5 6 7 8 9 10	$\begin{gathered} 1+2 \\ \\ 4+5+6+7 \end{gathered}$	$\begin{array}{r} £ 6.97 \\ £ 10.72 \\ £ 17.69 \\ \\ £ 0.55 \\ £ 0.02 \\ £ 0.59 \\ £ 0.00 \\ £ 1.15 \end{array}$	$\begin{aligned} & £ 5.04 \\ & £ 7.50 \\ & \\ & £ 0.54 \\ & £ 0.02 \\ & £ 0.58 \\ & £ 0.01 \end{aligned}$	$\begin{array}{r} £ 0.04 \\ £ 0.12 \\ \\ \\ £ 0.00 \\ £ 0.00 \\ £ 0.01 \\ £-0.01 \end{array}$		£0.00	$\begin{aligned} & £ 1.89 \\ & £ 3.09 \end{aligned}$
NET NON-BUSINESS BENEFITS: COMMUTING NET NON-BUSINESS BENEFITS: OTHER	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{gathered} 1+4+5+9 \\ 2+6+7+10 \end{gathered}$	$\begin{array}{r} \hline £ 7.54 \\ £ 11.30 \end{array}$					
NET NON-BUSINESS BENEFITS - SUB TOTAL	13	11+12	£18.84					
BUSINESS USER BENEFITS User Benefits Business Travel Time Fuel VOC Non-fuel VOC Business Vehicle Operating Costs During Construction (*) During Maintenance (*) During Construction and Maintenance (*)	$\begin{aligned} & \mathbf{1 4} \\ & 15 \\ & 16 \\ & \mathbf{1 7} \\ & 18 \\ & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & 15+16 \\ & 18+19 \end{aligned}$	$\begin{array}{r} £ 10.28 \\ £ 0.40 \\ £ 0.33 \\ \mathfrak{£ 0 . 7 3} \\ \hline \\ \hline \end{array}$	$\begin{aligned} & £ 6.58 \\ & £ 0.18 \\ & £ 0.31 \end{aligned}$	$\begin{array}{r} £ 1.92 \\ £ 0.12 \\ £-0.04 \end{array}$	$\begin{aligned} & £ 0.26 \\ & £ 0.10 \\ & £ 0.06 \end{aligned}$	£0.00	£1.52
Subtotal	21	14+17+20	£11.01					
Private Sector Provider Impacts Revenue (*) Fuel VOC Non-fuel VOC Private Sector Vehicle Operating Costs Investment Costs (*) Grant / Subsidy (*)	$\begin{aligned} & 22 \\ & 23 \\ & 24 \\ & \mathbf{2 5} \\ & 26 \\ & 27 \end{aligned}$	23+24	$\begin{aligned} & £ 0.81 \\ & £ 0.93 \\ & £ 1.74 \end{aligned}$				$\begin{aligned} & £ 0.00 \\ & £ 0.00 \end{aligned}$	$\begin{aligned} & £ 0.81 \\ & £ 0.93 \end{aligned}$
Subtotal	28	22+25+26+27	£1.74					
Other Business Impacts Developer \& Other Contributions (*)	29							
NET BUSINESS IMPACT	30	21+28+29	£12.75					
TOTAL PRESENT VALUES OF TEE IMPACTS	31	13+30	£31.59					

* Impact calculated external to PEARS \& manually input by User. Any manual inputs will require the manual recalculation of the Sub-Totals / Impacts etc. as well as the NPV \& BCR etc. in Table 15C.

Table 15A: Economic Efficiency of the Road System (Market Prices)
This analysis is based on Central traffic growth.
Benefits appear as positive numbers, while costs appear as negative numbers.
All entries are in units of $1,000,000$ pounds sterling and are discounted to 2010.
Evaluation period 30 years. Scheme opening year 2016.
Current year 2014.

Table 15B: Public Accounts
Scheme Title PEARS Analysis - A425/A46 Improvements (2016 vs. 2021) Jan Revised

IMPACT	Reference	Cal'c / Source	Total
Local Government Funding Revenue (*) Investment Costs (*) Operating Costs (*) Maintenance Costs Non-Traffic (Group 1) (*) Traffic Related (Group 2) (*) Developer \& Other Contributions (${ }^{*}$) Grant Subsidy Payment (*)	$\begin{aligned} & 32 \\ & 33 \\ & 34 \\ & \\ & 35 \\ & 36 \\ & 37 \\ & 38 \end{aligned}$		
Net Impact	39	Sum(32 to 38)	
Central Government Funding: Transport Revenue (*) Investment Costs Operating Costs (*) Maintenance Costs Non-Traffic (Group 1) (*) Traffic Related (Group 2) (*) Developer \& Other Contributions (${ }^{*}$) Grant Subsidy Payment (*)	40 41 42 43 44 45 46		$£ 5.35$
Net Impact	47	Sum(40 to 46)	$£ 5.35$
Central Government Funding : Non-Transport Indirect Tax Revenues	48		£1.18
TOTALS			
Broad Transport Budget Wider Public Finances	$\begin{aligned} & 49 \\ & 50 \end{aligned}$	$\begin{gathered} 39+47 \\ 48 \end{gathered}$	$\begin{aligned} & £ 5.35 \\ & £ 1.18 \end{aligned}$

* Impact calculated external to PEARS \& manually input by User. Any manual inputs will require the manual recalculation of the Net Impacts / Totals etc. as well as the NPV \& BCR etc. in Table 15C.
This analysis is based on Central traffic growth.
Benefits appear as positive numbers, while costs appear as negative numbers.
All entries are in units of $1,000,000$ pounds sterling and are discounted to 2010.
Evaluation period 30 years. Scheme opening year 2016.
Current year 2014.

Table 15C: Analysis of Monetised Costs and Benefits (Market Prices)
Scheme Title PEARS Analysis - A425/A46 Improvements (2016 vs. 2021) Jan Revised

IMPACT	Reference	Cal'n / Source	Total
TEE Impacts Noise (*^) Local Air Quality (*^) Greenhouse Gases (Emissions) (low) Greenhouse Gases (Emissions) (central) Greenhouse Gases (Emissions) (high) Journey Ambience (*^) Accident Benefits (*) Non-Business User Benefits: Commuting Non-Business User Benefits: Other Business User \& Provider Benefits Wider Public Finance (Indirect Tax Revenue) Option Values (${ }^{* \wedge}$) Present Value of Benefits (PVB) Broad Transport Budget Present Value of Costs (PVC)	51 52 53 54 55 56 57 58 59 60 61 62 63	$\begin{gathered} 11 \\ 12 \\ 30 \\ -50 \\ \\ \text { Sum(51 to } 60) \\ 49 \\ 62 \end{gathered}$	 £0.18 £0.36 $£ 0.54$ £1.54 £12.75 $£-1.18$
OVERALL IMPACTS			
Net Present Value (NPV) Benefit to Cost Ratio (BCR)	$\begin{aligned} & 64 \\ & 65 \end{aligned}$	$\begin{aligned} & 61-63 \\ & 61 / 63 \end{aligned}$	$\begin{array}{r} £ 25.42 \\ 5.75 \end{array}$

* Impact calculated external to PEARS \& manually inputted by User. Any manual inputs will require the manual recalculation of the NPV $\& B C R ~ e t c$.
${ }^{\wedge}$ Costs \& benefits which are regularly or occasionally presented in monetised form in transport appraisals, together with some where monetisation is in prospect.
In addition to the costs \& benefits outlined above, there may also be significant others, some of which cannot be presented in monetised form. Where this is the case, the analysis presented above does not provide a good measure of the value for money (VFM) and should not be used as the sole basis for decisions.

This analysis is based on Central traffic growth.
Benefits appear as positive numbers, while costs appear as negative numbers.
All entries are in units of $1,000,000$ pounds sterling and are discounted to 2010.
Evaluation period 30 years. Scheme opening year 2016.
Current year 2014.

[^0]: ${ }^{1}$ Microsimulation Consultancy Good Practice Guide, SiAS Ltd, 2005, Section 7-10

[^1]: ${ }^{2}$ See SiAS PARAMICS Support Knowledgebase Article 194 (www.paramics-support.com) for further information.

[^2]: ${ }^{3}$ Microsimulation Consultancy Good Practice Guide, SiAS Ltd, 2005 Section 7-10

[^3]: ${ }^{4}$ DMRB, Volume 12 Section 2 Part 1 - Table 4.2

[^4]: * Impact calculated external to PEARS \& manually input by User. Any manual inputs will require the manual recalculation of the Net Impacts / Totals etc. as well as the NPV \& BCR etc. in Table 15C.
 This analysis is based on Central traffic growth.
 Benefits appear as positive numbers, while costs appear as negative numbers.
 All entries are in units of 1,000,000 pounds sterling and are discounted to 2002.
 Evaluation period 30 years. Scheme opening year 2016.
 Current year 2011.

